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FOREWORD

The Technical Mechanics textbook has been published by the same authors

for the first time in 1996. This 2010 edition brings new examples, new figures and
is correcting some typographic errors.

The publication of this edition represents also a tribute of the last two

authors to the personality of one of the greatest professors that University
Politehnica of Bucharest ever had, Acad. Radu P. Voinea who passed away this

year.

The main structure of the initial textbook has been kept for this edition:

The first two chapters are dedicated to fundamentals of Classical Mechanics
and Physical quantities.

The next two chapters deal with the geometry of masses: Mass centers and
Moments of inertia.

Chapters five to eight are dedicated to Statics of a material point, a rigid
body and systems of rigid bodies, passing through the study of forces as
sliding vectors.

Statics of flexible cables is studied in chapter nine.

Kinematics of a point and of a rigid body are studied in chapter ten and
respectively eleven.

Kinematics of the relative motion of a point and rigid bodies are the objects
of chapter twelve, including an introduction to mechanisms analysis.
Chapters thirteen and fourteen are dedicated to the dynamics of a material
point and systems of material points.

Dynamics of the rigid body is presented in chapter fifteen,

Dynamics of percussive motions represent the objective if chapter sixteen.
Dynamics of the Material Point with variable mass is briefly discussed in
chapter seventeen.

The Principles of Analytical Mechanics, Lagrange equations, Hamilton
canonical equations, Poisson brackets, Variational Principles, Phase Space,
The Hamilton-Jacobi partial differential equation are presented in chapters
eighteen to twenty.

Technical Mechanics, being a fundamental engineering discipline, addresses

students from all faculties of our university which are learning in English. All
comments and suggestions of modifications are welcome.

October 2010,

Professor dr. eng. 1. Stroe
Professor dr. eng. M.V. Predoi
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1.FUNDAMENTALS OF CLASSICAL MECHANICS

1.1. Historical survey of Mechanics

The concept of equilibrium and motion of material bodies is a very old one.
Problems of mechanics attracted the attention of many pioneers of physics.
Although the field of Classical Mechanics is based on only a few fundamental
ideas, this certainly does not mean that the construction of Theoretical Mechanics
was a simple matter.

Although the Babylonians and Egyptians made progress in the practical
applications of Mechanics, they did not formulate general principles. It was the
genius of the ancient Greeks to be particularly concerned with giving coherent
account of the phenomena around them. Thales of Miletus (640-547 B.C.)
postulated that the multitude of physical phenomena must be related to a single
environment entity and he chooses water as his universal substance or principle.
Anaximenes has chosen air. Anaximander (610-547 B.C.) deliberately avoided a
name for the substance which underlies all that could be observed.

Motion was taking as a basic idea not needing further explanation. The idea of
force as being the cause of motion was developed by Empedocles.

The Greek thinker who had the most lasting and dominant influence on scientific
ideas was Aristotle (384 — 322 B.C.). Aristotle like many other Greek philosophers
was strong in the realm of ideas, but did not in general submit his ideas to the test
of experiment. Aristotle's theory of motion distinguishes between "natural" and
"compulsory" motion. The former is either circular or in a strait line (free falling
bodies). All other motions are compulsory and need applied forces.

Aristotle incorrectly concluded that the velocity of a falling body is proportional to
its weight. About 2,000 years past before the laws of motion were established on a
satisfactory basis by Galileo (1564-1642) and Newton (1642-1727). This partially
demonstrates the difficulty of the problem. Galileo concluded that a force causes a
change in velocity but there are no necessary forces to maintain a motion in which
the magnitude and direction of the velocity dose not change. This is the basic
statement of Galileo's law of inertia. He also recognized that the laws of motion are
not affected by the uniform motion of a reference frame. This is the essence of
Galileo's principle of relativity.

In his Philosophice Naturalis Principia Mathematica (the Mathematical Principles
of Natural Sciences) published in 1687, Newton introduced the notion of absolute
space, as a coordinate system attached to distant "fixed stars", the notion of
absolute time, independent of space, the notion of mass as a positive quantity
whose value does not depend on time, a measure of the quantity of matter in a
body and the notion of quantity of motion as the product of the mass and the
velocity of a particle. Newton formulated three laws as follows:



First law:
If there are no forces acting on a particle, the particle will move in a straight line
with constant velocity.

Second law:
A force acting on a particle produces a motion in which the force is equal to the
time rate of change of the quantity of motion.

Third law:
When two particles exert forces upon each other, the forces lie along the line
joining the particles and the corresponding forces are the negative of each other.

The gravitational theory (the law stating that the force between two bodies depends
on the inverse square of the mutual distance) was another of Newton's great
discoveries. Newton's gravitational theory is the first example of a theory of action
at distance. This theory did not give an explanation to the mechanism of
gravitation, but only gave a mathematical description of the phenomenon.

The history of electricity and magnetism followed a parallel development. The
discovery of electrostatics is attributed to Thales of Miletus. Later investigations
on magnetism showed that the law of force between magnetic poles is similar to
the Newtonian law dependence on the inverse square of the distance. However
further discoveries invalidate all this. Maxwell (1831 — 1879) discovered the laws
of the electromagnetic phenomena and constructed the mathematical model of the
“ether”, medium which allows the existence of these phenomena. Maxwell’s
successors tried to discover other properties of the “ether”. In particular it was
important to discover its motion. If it were at rest, then the “ether” would thus
provide a fixed frame of reference for the whole universe, the Newtonian absolute
space. The theory of “ether” replaced the theory of instantaneous action at infinite
distance. All experiments designed to determine the motion gave no results since
the motion of the “ether” was impossible to detect. When this conclusion was
unanimously accepted, Einstein (1879- 1955) developed his revolutionary
relativity theory based on two postulates:

The laws of nature (including the laws of mechanics and electrodynamics) are the
same in all inertial frames.

The velocity of light in vacuum has the same value for all inertial systems,
independently of the velocity the light source.

A consequence of Einstein’s relativity theory is that time and space where seen no
more as absolute, but as inextricably mixed not only in electromagnetism but also
in mechanics and indeed in all physical phenomena . Another consequence is that
relativistic mass is seen not as constant, but depending on velocity.
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Max Planck (1858 — 1947) developed quantum mechanics, a valid theory for the
study of systems at atomic size.

For problems of dynamics involving macroscopic bodies (with a very large number
of particles, or when the number of particles is considered infinite) and velocities
are very small compared to the velocity of light in vacuum the results of Classical
(Newtonian) Mechanics are correct to a high order of approximation.

1.2. Object of Classical Mechanics

The object of study for the Classical Mechanics, the oldest fundamental part of
physics, 1s the motion of macroscopic systems at velocities which are very small
compared to the velocity of light in vacuum.

1.3. Basic concepts of Classical Mechanics: space, time, mass, force

Bodies move in space and time.

Physical space is reflected in Classical Mechanics by a three-dimensional
Euclidean space (Es). Space is assumed to be homogeneous (the same properties in
each point) and isotropic (the same properties in every direction).

Physical time is reflected by a one-dimensional Euclidean space (E;). Time is
assumed to be independent of space, homogeneous, but with a unique sense of
evolution.

Inertia is the tendency of a body to resist any change in its uniform motion or in its
rest-still condition. This is reflected by the basic concept of mass, a positive scalar.
The mass is also a measure of the capacity of a body to attract another, by
gravitational force. Mass is assumed to be a constant. In fact in the relativistic
mechanics, is proven that mass changes with the particle velocity as:

m=——t (1.1)

in which my is the mass at rest, v is the particle velocity and c is the velocity of
light in vacuum. However, for relatively small velocities, since ¢ = 300000km/s,
the mass can be assumed to be a constant.

The interaction between two bodies is reflected by the basic concept of force. A
force is represented by a vector. It is determined by its magnitude (absolute value),
direction (support line) and sense (positive or negative on the support line). The
point of application lies on the direction line.
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1.4. Models used in Classical Mechanics

A modeling process is a transposition of the observed world into a mathematical
form. The model is only a fiction about the real world. The principal models used
in theoretical and applied mechanics are the following:

Material point, named also by some authors “particle” but not in the quantum
mechanics sense, has a constant mass which is concentrated in a geometrical point.
This model of body is suitable when its dimensions are small in comparison with
its path.

Material line is a mathematical model for a body having two dimensions much
smaller that the third. Examples of such bodies are a bar (rod, truss) and a string. A
rod has, a high rigidity, while a string is very flexible.

Material surface is a mathematical model for a body having one dimension much
smaller compared to the remaining two dimensions. Examples of such bodies are
plates and membranes. A plate has a high rigidity, while a membrane is very
flexible.

Continuous body is assumed to be indefinitely divisible without losing any of its
specific properties. Three models of continuous bodies are considered in the
following.

Rigid body: in spite of the action of forces, it does not show any deformations, in
other words the mutual distances between the points of the body do not change. It
is the main model in Classical Mechanics.

Elastic body: fully restores its original shape and dimensions after the removal of
external forces or equivalent is to say the body has no residual deformations. The
model will be used in several occasions in what follows.

Plastic body: does not restore its original shape and dimensions after the removal
of external forces. The model is used for a particular impulsive motion or collision.

1.5. Principles of Classical Mechanics

Newton stated his three famous laws or principles of Classical Mechanics using the
concept of absolute space, but as it has been shown, absolute space is
unobservable. Thus, the principles of classical mechanics could be reformulated as
follows:



1. There is an inertial frame, such that a material point will be relative to
it either at rest, or in uniform motion along a straight line, if there are
no forces acting upon it.

Note that if there is such an inertial frame, then there are an infinite number of such
inertial frames. All reference frames having a motion of translation relative to the
first inertial frame are also inertial reference frames.

2. If m denotes the mass of a material point, a the acceleration and F the
force acting on the material point, then:

ma=F. (1.2)
Note that this is not the definition of force, but a principle.

3. If a material point A acts on a material point B with a certain force,
then the material point B also acts on the material point A with a force
equal in magnitude and direction, but opposite in sense.

The forces that the material points A and B exert on each other are always directed
along the straight line segment AB joining these points.

This principle is known as the principle of action and reaction. Note that these two
forces are not in equilibrium because they act on different material points.

4. If two forces 7, and F, are acting simultaneously on the same material
point, the effect they produce is the same as if the material point would
be under the action of only one force 7 =F +F,, the vector sum of the two
forces.

Newton considered this statement as a corollary of his three laws. In fact this is not
a corollary but a fourth principle: the principle of the parallelogram. The rule of the
parallelogram is a mathematical definition and it is verified experimentally. The
principle of the parallelogram states that the rule of the parallelogram is true for
two forces acting simultaneously on the same material point. This means that the
two situations (Fig. 1, a, b) are equivalent from the mechanical point of view.

v

O _
F,

Fig. 1. Principle of parallelogram. Two forces (a) and the sum of the two forces (b).



1.6. Subdivisions of Classical Mechanics

From the very early works, the Classical Mechanics has been subdivided into three
parts:
a) Statics in which is studied the equilibrium of mechanical points and rigid
bodies under the action of forces and moments of forces.
b) Kinematics in which are studied the motions of points and rigid bodies with
respect to fixed and mobile systems of reference.
c¢) Dynamics in which are studied the motions of material points and rigid
bodies as produced by the action of forces on these points or rigid bodies.

The first two main parts are included in the first volume of this textbook.

In the second volume is included the third part and also several chapters of
Analytic Mechanics. This is a more recent part of Mechanics which offers the
possibility to investigate, the motions of mechanical systems having several
degrees of freedom, establishing in a unified manner, the differential equations of
motion for linear and angular parameters defining the state of these systems.



2. PHYSICAL QUANTITIES
2.1. Physical Quantities.

Consider a set of objects having a common physical property. The necessary and
sufficient conditions to define a physical quantity corresponding to this property
are the following:

e cxistence of a criterion making possible the distribution of these objects into
equivalence classes;

e cxistence of a criterion to order equivalence classes;

e cxistence of a criterion to compare equivalence classes and to attribute to each
class a scalar value (it is necessary to set up by convention two classes whose
scalar values are zero and one, respectively).

When these three criteria are satisfied, a physical quantity M may be written as
M=n.u (2.1)
n being the scalar value and u the measuring unit.

2.2. Measuring Units. International System of Measuring Units.

The fundamental measuring units used in mechanics are the units of length, time
and mass. By means of these units define the measuring units for other mechanical
quantities. For example as measuring unit of force it will be selected a force which
gives to a mass of 1 an acceleration of 1.

The International System of Measuring Units (S.1.) defines:

a) The meter (metre) is the unit of length. Since 1983, it is defined as the
distance travelled by light in vacuum in 14(299,792,458) of a second.

b) The second is the unit of time. Since 1967, the second has been defined to
be the duration of 9,192,631,770 periods of the radiation corresponding to
the transition between the two hyperfine levels of the ground state of the
caesium Cs 133 atom.

¢) The kilogram is the unit of mass. The kilogram is defined as being equal to
the mass of the International Prototype Kilogram (IPK) which is held at the
“Bureau International des Poids et Mesures” at Sévres near Paris, which is
almost equal to the mass of one liter of water.

As it can be seen, the velocity of light in vacuum (c) is the constant used in
defining the length:

¢=299792458 m/s 2.2)

The units of the International System of Measuring Units used in Mechanics are
indicated in the table 2.1.



Table 2.1. International System of Measuring Units used in Mechanics

Physical quantity Measuring unit Symbol

length meter m (m)

time second S (s)

mass kilogram kg (kg)

force Newton N (kg.m.s?)
pressure Pascal = N/m? Pa (kg.m'.s?)
energy, work Joule = Nm J (kg.m?.s%)
power Watt = J/s W (kg.m?.s7)
velocity meter per second (m/s)
acceleration meter per second squared (m/s?)

density kilogram per cubic meter - (kg/m?)
frequency Hertz Hz (sh
angular velocity radian per second rad/s (s
angular acceleration radian per second squared rad/s? (s?)

2.3. Homogeneity

Each physical quantity has a dimensional equation[a]=L'M’T", a, , and y being
scalar values. For example a velocity v has the dimensional equation [v]=L/T=LT"!,
an acceleration [a]=L/T2=LT" ,a force: [F]=[m][a]=MLT and so on. A physical
relation must be homogeneous i.e. if a=b or a+b=c, then physical quantities a, b
and ¢ must have the same dimensional equation:

[a]=[p]=[c]= M”17
Homogeneity is a necessary but not a sufficient condition for the correctness of a
physical relation.

2.4. Similitude.

Let us consider a model of a real object and a physical quantity 4 having the values
A, and A4, for the model and the real object, respectively. The similitude coefficient
is the ratio:

A (2.3)

In general k4#1. If it is intended to have the same value for the physical quantity A4,
on the model and on the real object, it is necessary to make a model with ka=1.




3.MASS CENTERS

3.1. Static Moments

Let us consider a system of material points 4; of masses m; (i=1,...n). By definition
the static moment of the system of material points with respect to the point O, the
origin of a Cartesian frame, is the vector:

§=Ymr. 3.1)

where7, = OA; are position vectors in this frame. The static moments of the system
of material points with respect to planes Oyz, Ozx and Oxy are:

SOyz :Zmixi; SOzx :Zmzyz’ SOxy :Zmizi'
If the material points are situated in plane Oxy, then:
Soy = Zml.xl.; Sox = Zmiyl. ,

are called static moments of the system of material points with respect to axes Oy
and Ox .

(3.2)

(3.3)

3.2. Mass center

By definition the center of mass of a system of material points is a point C with
respect to which the static moment of the system is equal to zero.

ZC o
. S
Z A L .~
4 N
1 \\
]
i AN
! \
1 \
II - \ yC
1 1
IA1 I.IC ]
1 ’
1 7
1 /7
_“ C //,
.
T/ ‘
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S R
<. _-
XC y
»
»

Fig. 3.1. Position of a material point in reference frames

Using the notations (Fig. 3.1):0C =p, O_Ai:;l.and C_Al:a it can be written
successively:



;i:F_H"’ic ; Zmr—Zmp—l—Zml Vo (3.4)

According to the definition: me r-=0, so thathlE = Zml; The position
vector of the mass center p(&,7,¢ )can thus be obtained from the last equation:

_ Smr
p=
dSom,

Zm > my, Zm 3.5)

DY -
From (3.4.) it follows that the static moment of a system of material points (with
respect to a point O, to a plane Oyz, Ozx or Oxy (or to an axis Oy or Okx, if the
material points are situated in the Oxy plane) is equal to the static moment with
respect to the same point, plane (or axis) of the total mass placed at the center of

mass.
If the material system is a continuous body, then (3.5.) becomes:

_ I;dm
p= , or
jdm 6
f—Jdem, n_jjyﬂ’ (—IIde, '
dm dm dm

where dm denotes an elementary mass.
If the continuous body is homogeneous, dm=p dV in which p is a constant mass
density and dVis an elementary volume, then (3.6.) becomes:

m rdv

SN
P | A | B Ay || K
e e T

If the continuous body is a homogeneous shell or membrane dm= p; d4, in which
ps 18 a constant superficial mass density (mass per unit area) and d4 is an
elementary area, then (3.6.) becomes:

j [rda

(3.7)

IdA 3.8
e el oY
jdA [[aa” [[aa
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If the continuous body is a homogeneous material line, dm=y ds and y is a constant
linear mass density (mass per unit length) and ds is an elementary length, then
(3.6.) becomes:

oo Jjj or
S
£e Ijxds ’ - ijds ’ ‘= jjzds 3:9)
ds ds ds

3.3. Mass center of a symmetric system of material points

('Xi,‘Yi,Zi)

z z 7z
Dﬁﬂi) (Xi,Yi,Z (Xi,YisZi)
('Xi,'.}j% 0 }; 0) ’ y R

i)
0 -
/ /3
X X X o
(Xi,Yi-Zi)

Fig. 3.2. Symmetric material points, about a plane, an axis and a point.

A point O, the line Oz, the plane Oxy are called respectively a center, a line, or a
plane of symmetry of the system of material points if for each point 4; having a
mass m; there exists in the system a point B, having the same mass m; placed
symmetrically with respect to the origin O, line Oz or respectively the plane Oxy.

If O is the center of symmetry (Fig. 3.2 a) then for each point 4; (x; y; z; ) having a
mass m; there exists a point B; (-x;, -y, -z;) having the same mass m;, and

evidently Y m, x, =0, m,y, =0, > m,z, =0. It follows by virtue of (3.5) that
¢=0, n=0, {=0, therefore the mass center is O, the center of symmetry.

If Oz is axis of symmetry for the system of material points (Fig. 3.2 b) then for
each point 4;(x;y;z;) having a mass m; there exists a point B;,(-x;-);,z;) having the
same mass m; and evidentlyZml. X, = O,Z m,y, =0. It follows by virtue of (3.5)

that £=0, n=0, therefore the center mass lies on Oz (axis of symmetry).

If Oxy is the plane of symmetry of the system of material points (Fig. 3.2 ¢) then
for each point 4; (x; y; z;) having a mass m; there exists a point B;(x; v, -z;) having
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the same mass m; and evidentlyZml. z, =0. It follows by virtue of (3.5) that (=0,

therefore the center of mass lies on the Oxy plane of symmetry.

We can conclude that a symmetric system of material points always has its center
of mass either in its center of symmetry, or on its axis of symmetry, or on its plane
of symmetry.

3.4. Mass center of systems of material points

If a system of material points § may be obtained by a reunion of n subsystems of
material points S, ... , S, whose centers of mass are known, it can be successively
written:

Zm,;i Szml’;i +'.'+§mi;i M151 +'"+M"a

- £ K- )
p= D om, - domi+ Y m, T M, .+ M, (3.10)
S S 5

It follows that the center of mass of a system of material points S is not altered if
its subsystems §; ,..., S, are replaced by material points having their masses equal
to the masses M ,..., M, of the subsystems and if these equivalent material points
are placed at their mass centers.

If a system of material points S may be obtained by taking a system S, out of a
system §;, for which the mass centers are known, it can be successively written:

4_1 mri+ mi;i LY mr, — mi;i - —
‘_):;mlr :; % %“ :; ; :Mlp]+(_M2)p2 (3 11)
Zmi Zmi +Zmi _Zmi Zmi _Zmi M1 +(_M2) .

S S S, S, N S,

Therefore, if a subsystem of material points is taken out, its mass must be
considered negative in (3.10).

3.5. Mass centers of some material lines, material surfaces and
material bodies

a) The arc of a circle
A material line takes shape of an arc AB (Fig. 3.3) of radius R. Because of the
symmetry, the center of mass C of the arc lies on the axis Ox, the bisector of the
central angle 2a. It follows that #=0.

If the elementary angle is taken d@, then the elementary arc is ds =Rd60 and the
projection on the ox axis of the mass center of the elementary arc is x = Rcos 6. It
follows

12



J.xds T RcosORdO

- _ % _ Rsing",  Rsina (3.12)
Jds j RdO o, “

y A

o
R

O > X

-0l
X
<>

Fig. 3.3. The mass center of an arc of a circle.

b) The triangle

By cutting a triangle in infinite thin stripes (equivalent with material lines) parallel
to one of its sides, the mass centers of these segments lie on the triangle median,
and by consequence so does the center of mass of the triangle. It follows from this
statement that the center of mass of the triangle is at the point of intersection of the
three medians (Fig. 3.4).

(X2, ¥2, 22)

(X1, y1, Z1)

P (X3, y3, Z3)

Fig. 3.4 The mass center of a triangle (triangular plate).

The crossing point of the medians is at a distance of one third of the corresponding
distance from each side and two thirds from the corners. Considering the three
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corners of the triangle having the coordinates (x; y1 z1 ), (X2 y2 22 ), (X3 y3 z3 ) it can
be proven that:

g_x1+xz+x3. 77_)’1+y2+y3 . é/_Zl+ZZ+Z3
S S e N =1 72 73, -

; ; N G.13)

¢) The trapezium

The centers of the segments parallel to the bases of a trapezium lay on the median
EF and hence so does the center of gravity of the trapezium.

b B
E a N
SN\ /// “ .- -7
¥ 14 : P -
Y1 3 //C,)‘/
/, n ’4”’ ‘I
A E :2 A M z"’ ‘l
B 2 E
a) b)

Fig. 3.5 Mass center of a trapezium

In order to determine the distance 7 of the center of gravity C from the base, the
trapezium is divided into two triangles (Fig. 3.5 a).
The areas are A;=bh/2, A>=Bh/2 and the mass centers are at heights y,;=2h/3,
v>=h/3, in which B and b are the lengths of the two parallel edges distanced by 4. It
follows that:
_bh/2-2h/3+Bh/2-h/3  B+2b I (3.14)
bh/2+ Bh/2 3(B+b)

From this, follows the geometric construction of the center of gravity shown in Fig.
3.5b. From the similarity of triangles MEC and NFC one gets:
B
—+b
Ui 2
é b

h_ﬂ_B+

which confirms the above formula.

d) The sector of a circle

A sector of a circle is considered symmetrically placed about the Ox axis (Fig.
3.6), the bisector of the angle 2a. It follows that n7=0. An elementary area is
defined by radiuses p and p+dp and angles € and 6+d6. The elementary area is
then dA=dp pd6, x=p cos@ and
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Fig. 3.6. The mass center for the sector of a circle

a R a 3R
do- [ 0 ing.l P
: deA ”pcosé’-p-dpd@ _-LCOS& a0 .([’0 dp sin0 —a 3 |o
a4 p-dpdo ¢ * e p
far ] faofoir o]
or:
65:2Rsin05 (3.15)
3aa
For a semicircle 2o=mn and the previous formula becomes:
AR (3.16)
3r

¢) Zone of a hollow sphere
Consider the zone of a sphere of radius R (Fig. 3.7) between parallel planes z=z,,
and z=z,. Because of symmetry, the center of mass C of the zone lies on the axis

Oz.

Fig. 3.7. The mass center for a zone of a sphere
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It follows that =0, n=0. If the elementary area is taken as a zone of the same
sphere, between parallel planes z=Rsinf and z+dz, of radius r=Rcosé,
corresponding to angles 6 and 6+d6 (Fig. 3.6) from the sphere center, then the
elementary area is:

dA=2nrds =2mr RdO =27 R?cos0do, (3.1)

and the mass center is located at:

T 20"
szin@-Zﬁchosﬁ-dﬁ cos
é:_jz-dA_ 4 _R 2 |y _Rcos26 —cos26,
= Y - 0, _2 . 0, _4 iné. —sind
'[d J.27[R20089'd6’ Slngal SING, =S &, (32)

0

2(sin’ @, —sin’ 6
X ( — 1):—(sin92+sin491):
4  sin@,—sing,

ZZ+ZI

2

: . : : R
As a particular case, the mass center of a hemispheric dome is { = 7

f) The circular cone

Consider a cone of height /4, having the radius of the circle of the base R (Fig. 3.8).
Because of the symmetry the center of mass of the cone lies on the axis Oz. It
follows that £&=0, n=0. If the elementary volume is a frustum of a cone between
parallel planes z and z+dz, then the mass center of the elementary volume is at z,
and its volume is dV =zr’dz in which the radius is obtained from the
proportionality relation »/R=z/h.

7z z+dz

v
<

Fig. 3.8 Mass center for a circular cone

The mass center is

h ? |
T—zdz -
68_J'Z.dV _([ e 4o 3n (3.18.)
fav ¢ R, 2| 4
‘(‘)‘ﬂ'hzZ zZ 3 |0
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Hence the mass center of a cone is independent of the base radius R. Note that the
same location of the mass center is valid for a pyramid or an arbitrary cone (for
example if the base is not a circle).

g) The Hemisphere.
Consider a hemisphere of radius R (Fig. 3.9). Because of symmetry the center of
mass C of the hemisphere lies on the axis Oz.

A
z

Fig. 3.9 Mass center of a hemisphere

It follows that £=0, n=0. The elementary volume is taken as a solid section in the
hemisphere between parallel planes z and z+dz. The z coordinate of the mass
center of such an elementary volume is obviously at z and its volume is

dV = ridz = 7Z'(R2 — 7 )dz , becauser® = R* — z*. Thus

R R
2 2 2 (.3 R* R*
Jz-dV zn(R"—z7)dz R J.zdz Iz dz &~ _ 1t
R R
IdV (R’ —z°)dz szdz—jzzdz R ——
0

0

(3.19)

S ey

O e

h) For the plate shown in Fig. 3.10 calculate in the indicated Cartesian frame the
mass center. The formulas for systems of bodies become in this case

A

y

Fig. 3.10. Mass center of a composite plate
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— A1§1 + A2§21 + A3§3 A1771 + A2772 + A3773

T aaea T aiara
. 1
mm:4=—ﬂ9@24:—ﬂf,4_—5mf
&=2a; &H=a; &=3a;
_42a) 8a 4a 4a

1 RY/4 3z’ RY/4 ¢ RY/4

It follows that:

3 2ra* - 2a+1/2xa* -a—-1/2xa’ -3a

=1.5a
2ra’ +1/2xa* —1/27xa’

g

_2za’-8a/3x—1/2za’ -4a/3x —1/2xa’ -4al3n _2a
T 2ra’ +1/2xa* —1/2xa* s

3.6. Area and volume of a body of axial symmetry. Theorems of
Guldin-Pappus.

Computing the lateral area or the volume of a body obtained by rotating a
curvilinear line (I') around an axis, can be of interest in technical applications.

Fig. 3.11 An axially symmetrical body.

It can be assumed that symmetry axis is Oz and so (I') is defined asr(z):z €[0,4].
18



3.6.1. The first theorem of Guldin-Pappus

The lateral area of an axially symmetrical body can be obtained from the product:

A=2nrL, (3.20)
in which 7.1s the distance between the symmetry axis and the mass center of (I')
considered as a material line.

In order to proof the theorem, it must be defined first the lateral area of an axially
symmetrical body:

h
A=[27r(2)dz. (3.21)
0
The mass center of the “material line” (') is
L
jrds
o=t (3.22)
J-ds
0
. ) ) ) 2 5 dr\’
For bodies with slowly varying radiusesds =N dr” +dz" =dz,|1+ % dz , so that
z

h
the last integral leads to I r(z)dz = L., which proves the theorem.
0

Example. A sphere of radius R is obtained by rotating a semicircle of the same
radius around its diameter. Find the area of the sphere.

The length of the semicircle is L=7R, and the mass center lies at a

RsinZ )
distancer. = pm 2 — 2 R. The area of the sphere is then 4 =27 —R- 7R =47R’,
7 P4
2

which confirms the known result.

3.6.2. The second theorem of Guldin-Pappus

The volume of an axially symmetrical body can be obtained from the product:

V=2rrA, (3.23)
in which r,is the distance between the symmetry axis and the mass center of (A),
the area bordered by (I).
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In order to proof the theorem, it must be defined first the volume of an axially
symmetrical body:

v=[zlr()] d. (3.24)

The mass center of the “material surface” (A) is :

HrdA jtrrdz jl.rzdz

4 =0 2 =2 . (3.25)
HdA A 24

A

VA:

h
Replacing Irzdz in the formula for V, the second Guldin-Pappus theorem is
0

proven.

Example
A sphere of radius R is obtained by rotating a semicircle of the same radius around

its diameter. Find the volume of the sphere.

2

. ) V4 ) )
The area of the semicircle is 4 = and the distance between the diameter and

T
Rsin— AR
the mass center of the “semicircular plate” isr», = 3 s The volume of
T T
2

2 3
the sphere is thusV = Zﬂﬁ 7R = AZR
3z 2

, confirming the well known result.
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4. MOMENTS OF INERTIA

4.1. Definitions

A Cartesian coordinate frame Oxyz and a system of material points A;(x;y;z;) of
masses m; are considered (Fig. 4.1).

L VX Y o/
A,(ml)

[ 2 2 | 2
X, +y Hz Z; @

o

(e
v
<

Xi

Fig. 4.1 A system of material points

By definition:
Jyoz :Zmi‘xiz; Jzax :Zmzyzz’ Jxoy :zn/lizi2 4 (41)
i=1 i=1 i=1

are called moments of inertia of the system of material points with respect to
the planes Oyz, Ozx and Oxy respectively. In a similar manner can be defined the
moments of inertia with respect to axes Ox, Oy and Oz as:

Jo= om0 = m(E X0 Jo= 3 m +y) (42)
i=1 i=1 i=1
and the moment of inertia with respect to the origin:

J, =D m(xl+yl+20). (4.3)

i=1

By definition:
ny :Jyx :Zmi‘xiyi; Jyz :Jzy :Zml’yizi; sz :sz :Zmi‘xizi (44)
i=l1 i=1 i=1

are called products of inertia. These ten expressions are not independent. The
following relations are verified:

J =%[Jy +J.=J, s, =%[Jz +J, =, ] I, =%[Jx +J, —Jz];(4 .
J, =%(Jx +J,+J.).
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It follows that only J,, J,, J. Jy, J,-, Je. are independent. By definition the
symmetric matrix:

Jx _ny _sz
[J]=|-7, J, —J,. (4.6)
_sz _']zy Jz

is called the matrix of moments of inertia and the symmetric second — order
tensor having the components J, J,, J., Jo= Ju, J-= J,, J.= J.. represents the
tensor of moments of inertia.

4.2. Moments of inertia and products of inertia with respect to parallel
axes

Consider a system of material points 4; of masses m; (i=1,2,...,n) and two Cartesian

coordinate frames Cxyz and Ox’y’z’ (C is the center of mass for the given system

of points and the axes of the two systems are parallel) (Fig. 4.2).

b

A7

A7
° Ai(l’l’li)

Z;

C Y

Xj

Vi

v

b

X

n

Fig. 4.2 System of material points relative to two reference frames with parallel axes

Denoting by x;y;,z;, and x;’,y;’,z;" the coordinates of A; with respect to Cxyz and
Ox’y’z’ respectively and by & 7, {'the coordinates of C with respect to Ox’y’z’ and
since x, =E+x;; ¥, =n+y,;z =¢ +z, it follows that :

J. :Zn:m,. (7 +Z;2):Zn:mi [+ ) +(+2)]

= Zml. (yi2 + Zl.2 ) + Z:ml.(n2 +C)+ 2772ml.yl. + 2§Zmlzi 4.7)
i=1 i=1 i=1 i=1
=J +M(n* +¢7)
The mass of the system of material points is M = Zm , proving that the formula is

i=1

also valid for a rigid body.
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Zmlx,yl Zm §+x 77+y Zmlxlyl+§772m
(4.8)
+‘§Zml‘yi +772mixi =J, +Mén
i=1 i=1
The following expressions were used in deducing the last two formulas, which are
representing the static moments of the system of material points with respect to
planes passing through the center of mass: Z mx, = O,Z my, = O,Z mz, =0
Analogously, one can find the other similar relations:
Jo=J +M@*+$); J=J, +MEn;

2 2. _ .
Jo=d, A M(C+ &) J,.=J, +Mns; (4.9)
Jz':Jz+M(§2+772); J":sz+Mé/§'

In general, if an axis A 1s passing through the center of mass of a system of
material points and is parallel to the axis A’, then

J,=J, +Md’, (4.10)
where d denotes the distance between the axis A and A’, whereas J, and Jo- denote
the moments of inertia with respect to these axes. These expressions are known as
Steiner’s formulas.

4.3. Moments of inertia with respect to axes intersecting in a point

4 A system of material points 4; of masses m;
z (1i=1,2,...,n), is placed in a Cartesian coordinate
— 4 A(m) system Oxyz and an axis A is passing through its
, (A) origin C. If we denote by u the unit vector of A

and by 7 the vector OA4;, then the distance d;
> from 4, to the axis A is given by (Fig. 4.3):

0O y d, =|r|sing, =7 xi]. (4.11)

X
Fig. 4.3 Distance between a point and an axis

The components of the position vector 7, are denoted by x; y;, z; and the
components of the unit vector u are (cosa,cos f,cosy ) so that:

i Ji k

LXU=| X Vi Z; 412
cosa cosf cosy (4.12)

=(y,cosy —z,cos B)i +(z,cosa —x,cosy)j +(x,cos B—y,cosa )k
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The distance between the arbitrary point 4; and the axis A is:

d, =[r x| =
(4.13)

\/(yl. cosy —z,cos B) +(z cosa —x,cosy) +(x,cos B~ y, cosax)
It follows that:
Jy= Zn:midlz

i1
= imi [(yl. cosy —z,cos B) +(z cosa —x,cosy) +(x,cos S -y, cosa)z}
iml
(4.14)

- [th (yl.z +2z] )}cos2 a +{Zn:mi (zl2 +x7 )}cos2 ,B+[Zn:mi (xl2 +y? )}cos2 y

i=1 i=1 i=I

—2{2 ml.xl.yi}cosa cos - 2[2 ml.yl.zi}cosﬁcosy - 2{2 ml.zl.xi}cosycosa
i=l1

i=1 i=1
or by applying the definitions (4.2) and (4.4):

J, =J cos’a+J cos’ f+J. cos’
v yoos fi+J;cos'y (4.15)
—2J,  cosacos f—2J cosfcosy—2J  cosycosa

4.4. Principal moments of inertia. Principal axes of inertia

Maxima and minima of J, seen as a function of three variables cosa,cos ,cosy
which are subject to the constraint:

cos’ a+cos B> +cosy’ —1=0 (4.16)
may be found if one applies the following necessary conditions :
L0 0 g 4.17)
d(cosar) d(cos f3) d(cosy)

in which the function ® is given by:

O=J, +ﬂb<1—coszoz—coszﬁ—cos2 y):Jx cos’ ar+.J, cos’ B+, cos’ y +
(4.18)
—2J  cosacos f—2J cos feosy —2J cosycosoz—i—ﬂu(l—cos2 a —cos” B—cos’ 7/)

The necessary conditions become:
(J,—A)cosa—J, cos f—J cosy=0
—Jyxcosa+(Jy—l)cosﬁ—]yzcosyzO (4.19)
—J_ cosa+J_ cos f+(J, —A)cosy =0

This system of three homogeneous linear equations cannot have the trivial solution

cosa=cosff=cosy=0. It is thus necessary that the system’s determinant
cancels:
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J -1 —J -J

X xy Xz
~J, J,-A J_ |=0. (4.20)
~J,  —J, J.-2

In the following, the roots of the algebraic equation obtained from developing the
determinant will be denoted: A,,4,,4,. Two theorems concern these values:

T1. Among the roots A,4,,4, are those which represent the maximum and
minimum of J, .
Indeed, if A4 =J, 1s one of these roots and cosa;,cosf,cosy, are the

corresponding values of direction cosines, then by multiplying the three equations
(4.19) respectively by cosa,,cosf,cosy, and adding the resulting equations
afterwards, it follows that:
-4 (cos2 a, +cos’ B, +cos’ 7/i)+ J, cos’ a, + J, cos’ B +J.cos’ y, @21
—2J,, cosa, cos f§, —2J _cosa, cosy, —2J_ cosy, cosa, =0
but A =J, (i=1,2,3) and  because by  virtue of  (4.10)
cos’ @, +cos 3 +cosy! —1=0, it follows:
J,=J cos’a,+J cos’ B, +J cos’y,

(4.22)
—2J,, cosa, cos 5, —2J _cosa,cosy, —2J_ cosy, cosa,.

T2. The directions defined by the direction cosines cose,,cos S,,cosy, (i=1,2,3)

are orthogonal.

Indeed, by multiplying the three equations (4.19) written for
A=A, cosa=cosa;, cosf=cospf, cosy=cosy,, respectively by
cosa;,cos 3,,cos 7, and by adding these equations afterwards, it follows that:

-4 (cosai cosa; +cos f3,cos , +cosy, cosy, ) +J, cosq, cosa,
+J, cos B cos B, +J_cosy,cosy; —J (cos o, cos B, +cosa; cosﬂi) (4.23)

-J (cosyl. cosa; +cosy, cosal.)— J . (cosﬂi cosy; +cosf, cosyl.) =0
If the index i is replaced by j and at the same time the index j by i, one gets:
—4, (cos Q; cosa; +cos 3,cos 3, +cosy, cosy, ) +J, cosa; cosq,

+J, cos B, cos B, +J_cosy,cosy, —J, (cos a; cos 5, +cosa; cos f, ) (4.24)

—-J . (cosyj cosa; +cosy, cosaj)—Jyz (cosﬂj cosy, +cos f3, cosyj) =0
By subtracting equations (4.24) and (4.23), it can be obtained
(/11. -4 )(cos @; cosa; +¢cos f3,cos f, +cosy, cosy, ) =0 and because in general
A # A; it follows that:
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cos @, cosa; +cos ffcos B, +cosy,cosy; =0. (4.25)

The consequence is that these two directions are orthogonal. It also follows that:

J; =J . cosa,cosa; +J cosf cos f,+J cosy, cosy,
-J, (cosai cos 5, +cosa; cos,&’[)—Jyz (cosﬂ[ cosy; +cos cos;/,.) (4.26)

-J_, (cosyl. cosa; +Cosy, cosal.) =0

Therefore, the products of inertia are null in this frame. The moments of inertia
J,,J,,J, are called principal moments of inertia. The axes whose direction

cosines are cosq;,cos f,cosy, (i=1, 2, 3) are called principal axes of inertia.

These axes are orthogonal. The products of inertia with respect to principal axes of
inertia are null.

4.5. Moments of inertia of planar systems of material points

If the material points are situated in the Oxy plane, then z, =0 and formulas (4.2)
and (4.4) become:

J=Nmyn =Y man =Y m, (52 +22)=d, +J;
= =1 i=l (4.27)

n
ny = Zmixiyi'
i=l

and J_=J_ =0.The development of the determinant (4.20) in this case reduces

to [/12 — (Jx +J, )/1 +J.J, - nyJ(l —J.)=0 and the principal moments of inertia

arc.
J +J J-J 7T
J=——>+ 2+ )
2 2 v

J +J J -J T
J2: xzy_\/|:x2 ,V:|+Jx2y

The third principal moment of inertia is J, =J_ =J,. For a plane system situated

(4.28)

in the Oxy plane cos f =sina, cosy =0 and equations (4.21) became:
(J,—A)cosa—J, sina=0

(4.29)
—J,, cosa + (Jy - l)sina =0
For A=J,,a =a, and for A =J,, a =a,, it follows respectively:
t Ty t ot (4.30)
a, = ; tga, = .
£Q, 7., 84, 7, —J,
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4.6. Ellipsoid of inertia. Radius of inertia

(A
7 A
Considering an axis (A) passing through the
origin O of a Cartesian orthogonal frame Oxyz
(fig. 4.4), and a point M on this axis so that
z C
OM =——, (4.31)
0 Y, 7
7 VI

where C is an arbitrary constant, then the

coordinates of the point M are:
Fig. 4.4 Ellipsoid of inertia axis

C C C
X=——cosa; y=——=cospf; Z=——=CO0SY}. (4.32)
NN NN NN
If cosa,cos f,cosy are substituted from (4.32) into (4.15), it follows that:
J X+ Jyy2 +J.z2° - 2J xy—=2J, yz—2J zx = Cc?. (4.33)
This represents the equation of an ellipsoid, called the ellipsoid of inertia. If Ox,
Oy and Oz are the principal axes of inertia then J =J;J =J,;J. =J;;
J, =0,J,.=0;J_ =0 and (4.33) becomes:

J X+ J,yt + Sz =C. (4.34)
If the material points are situated in the Oxy plane, then this equation becomes
J X’ +J,y" =C". (4.35)
This is the equation of an ellipse, called the ellipse of inertia. By definition
, J
i, = ﬁ , (4.36)

represents the radius of inertia or radius of gyration.

4.7. Moments of inertia of some material lines, material surfaces and
material bodies

As applications of the given definitions, in this paragraph are determined the
principal moments of inertia for some bodies, with possible technical applications.

4.71. The rod

It is considered a homogeneous rod of
y length / and of mass M (Fig. 4.5) which
represents the simplest one dimensional

v

A::::::::::::::::E::: Dololl Slolniol X eXample.
HERRHRR RS :“““H:””: The moment of inertia with respect to the
2 Kl dx . )

=>4 axis Oz , since the elementary mass can

< [ > be obtained as dm=M/I- dx, results as:

Fig. 4.5 The homogeneous rod
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1/2 3 2
M M 1/2 M
J. = x*dm = I g = = : . (4.37)
9, | 3 |lun 12
If the Oz axis is normal in A on the rod, the moment of inertia is:
! 31y 2
J. :fxzdm:J.xZde:M—x _Mr (4.38)
o1 3/ | 3

4.7.2. Circular disc

A homogeneous circular disc of radius R, mass M (Fig. 4.6) and arbitrary constant
thickness is considered as a two dimensional example.

A

y

Fig. 4.6 Circular disc

The moment of inertia with respect to the Oz axis can be determined using as

M M
elementary mass dm = dA = dpd@:
Y TR? ﬁRzp P
M N M |7 p*|® MR
J. =] p*dm=][]p dpdf = do| pPdp=—-0| = =—" (4.39
=Ip pr—zpdp ﬂR2j; !ppﬂR2040 S (4.39)

The moment of inertia about the mass center O is for symmetry reasons

1 .
J, =5(Jx +J, +JZ)=JZ, from which

J =J =

y

== (4.40)

J. MR
2

4.7.3. Rectangular plate

A homogeneous rectangular plate (Fig. 4.7) of dimensions a, b and of mass M is
considered in this case. The moments of inertia with respect to the Ox, Oy and Oz

. M M
axes, using as the elementary mass dm = —dA = —dxdy are:

ab ab
M M al2 b/2 M al2 y3 b/2 Mb2
J =[vidm=]1y*Zdxdy="— | dx | vV’dy="x| 2| = 4.41
=1y Yy == _J/z _Juy =t 3T (4.41)
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>
14 &
] o

1V

Fig. 4.7 Rectangular plate

and respectively:
M (a2 + bz)

2
J, =Ix*dm=—; J=( 4y )dm=J, +J, = (4.42)

In the particular case b=0, it can be found the case of the rod (4.7.1).

4.7.4. Rectangular parallelepiped
Consider a homogeneous rectangular parallelepiped (Fig. 4.8) of dimensions a, b, ¢
and mass M. The moments of inertia with respect to the central principal axes Ok,

) M M
Oy and Oz, using as the elementary mass dm = dV = dxdydz are
abc abc

J, =f(y2 +zz)dm=”f(y2+zz)%dxdydz

M ajz d;{ bf T (1 )dzdy} i M (b +c?)

—b/2—c/2 12

(4.43)

—al2

rz a/2 1
‘;M c/2
y

0 b/2

v<

A

X1
b a

4

\4

Fig. 4.8 Rectangular parallelepiped
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The other two moments of inertia, can be deduced in a similar manner:
M(cz+a2) M(a2+b2)
J =——72; J =— (4.44)
g 12 12
If ¢=0 in these equations, the particular case of the rectangular plate (4.7.3) is
recovered. If b=c=0, the particular case of the rod (4.7.1) of length /=a will be
obtained.

4.7.5. Circular cylinder

Consider a homogeneous cylinder of revolution of radius R, height A and of mass
M. The moment of inertia with respect to the Oz axis, using as the elementary mass

M M
dm = dV = dpd@dzis:
TR*H ﬁRsz P

H/2
) - To
7 v
X
Fig. 4.9 Circular cylinder
J = (x> +y*)dm=| p’dm = ? dpd@dz
z J.< y) J.'D .U.[’O ﬂRsz P (4.45)
M H/2 2 R MR2 .
=—— [ @[ do[pdp=—-
7Z-R H -H/2 0 0 2
The moment of inertia about the mass center O is:
Jo=[(¥* +3" +2")dm=[(p* + 2" ) dm =M—Rz+mz2 M dpdod:
¢ 2 TR’ H
2 H/2 2 R 2 3 2
MR Af | z2dzjd9jpdp=MR + Af H o X (4.46)
2 7R°H ;, 50 2 ZR°H 12 2
2 2
_ MR +MH :l(Jx +J +Jz)
2 12 2 g
From the last two equations, due to the symmetry about the Oz axis, it follows:
2 2
JXZJVZM(R—-FH—j. (4.47)
’ 4 12

For R=0 can be obtained the case of the rod (4.7.1) and for H=0 will be obtained
the case of a disc (4.7.2).

30



4.7.6. The circular cone

Consider a homogeneous cone of height £, having the radius of the circle of the
base R and mass M.

ol
=

y<

Fig. 4.10 Circular cone
The elementary mass is (Fig. 4.10) is

M 3M 6M
————dV =——-2npd pdz =
7 R’h/3 2 PP Ry,

and the moment of inertia about the Oz axis is:
h 4
I ‘dp dz = 612\4 " iz
hyls R°hy 4
(4.49)

dm =

(4.48)

pdpd

J. = J.x+y dm—

6M Rz 3MR’ h_5 3 R

= Iz =
R’hy 4 2h° 510

4.7.7. Sphere
A homogeneous sphere of radius R and of mass M is considered. The elementary
mass 1s determined as the mass of the volume situated between a sphere of radius p
and a sphere of a radius p+dp, it follows that:

M M 3M
dm=———dV =———4np’dp="—p°d 4.50
47R/3 47 R*/3 pap=Tgrar (459)
The moment of inertia of the sphere with respect to its center is:
R 5|R
_ 2 2 2 (2, [ 23M . 3Mp| 3 2
Ju—j(x +y +z )dm—jpdm—!p ?p dp—?—o —gMR (451)

The following expressions are also useful in applications:
Jo=J,=J; J +J, +J.=2J,=>3] =2J,
2 2 (4.52)
=J, =J,=J, =§J0 =§MR2

Example. Determine J,, J,, J, the principal moments of inertia, and determine the
principal axes of inertia of the plate shown in the next figure.
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This plate can be divided in two rectangular plates whose areas and masses are:
A =2a-6a=12a"; A,=2a-2a=4a’; A=A+ A, =16a’;

M 3 M M
M, =——12a>="M; M,=——4a" =",
16a 4 16a 4
y 4 4First principal axis of inertia
i 3
,l. a 2a
77
A / : |<_’
y
/
6a /
Sa /
al Y
3
/I 2a 2a a
v v ¥ ~ v * >
RS
~

~ \‘Second principal axis of inertia

Fig. 4.11 Geometry of the plate

The moments of inertia Jy, J, and the product of inertia J, are:

2 2 2

= 324 (612) . 334 (3a)’ +%(21c;) +%(5a)2 _ 461;461
2 2 2
_3M Qa)” 3M (o M (2a) M, 10Ma

+—(a) +— +
o412 4 4 12 4

3Ma M3a

ny=0+ 2 3a+0+ 5a = 6Md*

The principal moments of inertia are:
46Ma> _10Ma>  ((46Ma® _10Ma® )

Jp=te A | +(6Ma*)

It follows that J;=17.80Ma?; J,=0.75Ma’.

The angles a,; and a, corresponding to the principal axes of inertia are:

J 2
tan o, = T "yJ T 26Ma =-0414 = o, =-22°30'
y T T _17.8Md>
J 2
tane, == OMa ~2.414 = a, = 67°30'
y T T _0.75Md’
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5. STATICS OF A MATERIAL POINT

5.1. The free material point. The constrained material point

A free material point can occupy any position in space under the action of a certain
system of forces. A material point or particle whose ability to move is restricted by
constraints is a called a constrained material point. These restrictions are usually
expressed in such a way that the coordinates of the material point should satisty
certain equations or inequalities during the motion. A constraint is bilateral when
the restriction is expressed by equations linking the co-ordinates of the material
point. A constraint is unilateral when the restriction is expressed by inequalities.

Fig. 5.1 Free (a) and constrained (b) material point

For example the material point shown in Fig. 5.1a is a free one, because the three
springs do not restrict its ability to move, while the material point shown in Fig.
5.1b is a constrained one. More precisely, if OM=[ is a rod the constraint is
bilateral because it is expressed by equation x’+)’+z°=/> and if OM is an
inextensible string, the constraint is unilateral, because it is expressed by the
inequality x> + y* +z* </*, the point could eventually reach positions inside the
sphere of radius /.

5.2. Statics of free material point

5.2.1. Concurrent forces

The forces acting on the same free material point evidently have the same point of
application. They form a concurrent system of forces. By virtue of the principle of
the parallelogram, these forces may be in general replaced by a unique force, the
resultant force, using the polygon of forces. It can be written:

R=F+F,+.F,=)F (5.1)
-1
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If the projections of a certain force F,, on the Ox, Oy, Oz axes are
X, =|F|cosa; Y, =|F|cos B; Z, = |F|cos;; (5.2)

and if (5.1) is projected on the same axes, is follows that:

X=3 X v=37 2=32; (53)
=1 -1 -1

From (5.3) we can deduce the magnitude (modulus) |R| of the sum vector R and

the values of direction cosines cosa, cosf, cosy as:
R|=NX*+Y?+2°
X . Y z (54

= ; COSy = ;
JX2 472+ 22

cosa = ; cos f
VX2 4+Y? + 77 VX2 4+Y? + 72

5.2.2. Equilibrium of a system of concurrent forces

When R =0, the system of concurrent forces is in a state of equilibrium. If a free
material point is at rest and a system of concurrent force in a state of equilibrium is
acting on it, then the material point continues to remain at rest, by virtue of the
principle of inertia. The necessary and sufficient condition for a system of

concurrent forces to be in a state of equilibrium is R =0 or see (5.4):

Zn:Xl.:O; Zn:Yi:O; Zn:Zl.:O (5.5)
i=1 i=1 i=1

Example. Consider a free point M(Fig. 5.1a). If A(xi, y1,21), B(X2, y2, 72), C(X3, V3,
73), are fixed hanging points to which M(x, y, z) is connected through three springs
MA, MB, MC of elastic constants k;, k,, k3. G is the weight attached to the point
M, determine x, y, z for the state in which M is at rest.

The forces acting on the material point are:

Fi =k1m; F» =k2m; F =k3M_C
It follows that
Fi+F:+F3+G=0 or k MA+k,MB+kMC+G=0
The projections of this equation on Ox, Oy and Oz axes are:
Ky (x, = x) + ky (X, —x) + k3 (%, —x) =0
k= +k(y, = y)+k(y;-y)=0
k(z,—z2)+k,(z,—z)+ky(z;—2)-G=0

It follows that:
x_k1x1+k2x +kx, ky +ky, +ky, . Z_klzl+k222+k3z3—G
ko +k,+k ko +k,+k, k, +k, +k, '
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5.3. Statics of constrained material points

5.3.1. The axiom of constraints

The principles established by Newton are valid only for a free material point. If for
example a material point is constrained to move on a circle situated in a vertical
plane, it can be at rest at a position A (Fig. 5.2a).

a) b) G

Fig. 5.2 A constrained material point (a) and the equivalent forces of the constraint (b)

The force F=G acting on this material point is not null. It follows that the
principle of inertia is not applicable in this case. If it is assumed a free material

point A(Fig. 5.2b) under the action of two forces Fand R =—F, it will be also at
rest (the circle is shown by a broken line). It can be concluded that the situations in

Fig. 5.2a and Fig. 5.2b are physically equivalent. The force R is called reaction.
The component N of the reaction, perpendicular to the tangent, is called the

normal reaction, the tangential component 7' is called tangential reaction or
friction.

Similarly, if a material point is constrained to remain on a certain surface, then the
vector component of the reaction perpendicular to the surface is called the normal
reaction, whereas the tangential vector component is called the tangential reaction
or friction.

Therefore, whenever it is assumed that there is no friction, it is implicitly assumed
that the reaction is perpendicular to the curves or surfaces, which are in this case
called smooth constraints.

This replacement of physical constraints by reaction forces (and by moments in
some cases) is allowed by the axiom (principle) of constraints.
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5.3.2. Smooth constraint produced by a surface or a curve

In the first case, the reaction R=N. If the material point A is constrained to
remain on a surface f( x, y, z)=0, then the reaction N =A1-grad ( f ) and the

condition that the material point 1is at rest F+N=0, becomes
F+2-grad(f)=0or

X+lg:O;Y+/1g:O;Z+ig:0, (5.6)

Oox Oox ox

in which A is a scalar which remains to be determined.

Note. The gradient of a function of three variables is by definition

gmd[f(x,y,z)] :%74_%74_%]}

oy 0z
If the material point A is constrained to remain on a curve defined as intersection

f(x,y,z) =0
g(x,y,z) =0
components N = A-grad(f)+ u-grad(g), in which A and p are two scalars to be

of two surfaces { then the reaction can be written as a sum of two

determined. The condition for the material point A to be at rest F+N=0
becomes F +A-grad(f)+ u-grad(g)=0 or the system of scalar equations:

X+lg+ya—g:0; Y+/Ig+ya—g=0; Z+lg+ya—g=0. (5.7)
ox ox oy oy 0z 0z
Equations (5.6) and (5.7) make it possible to find the coordinates of point A at

equilibrium and the vector components of the reaction N . If only the coordinates
of A are required, then it is necessary to eliminate A and p. For a smooth surface
the following system of equations is to be solved:

Jf(x,y,2)=0
r_y_Z 5.8
7T T >
ox oy oz
and for the case of a smooth constraining curve, the system to be solved is:
X Y Z
oF o o
x,v,z)=0; xy,z)=0;, |=— — —=—|=0 59
f(x..2) g(x».z) o o o (5.9)
2 %8 %
ox oy Oz
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Example 1.
A material point A is constrained to move on the sphere x’+y’+z>-R’=0. If

Ao(X0,Y0,20) 1s a fixed point and an elastic spring ApA of constant characteristic & is
connecting Ay and A, determine the coordinates of the equilibrium positions of A.

Fig. 5.3 Material point on a smooth sphere

Answer.
The points on the sphere verify f{x,y,z)=0 with f(x,y,z)=x"+y’+z"—R*. The
computations are successively:

gsz; gzZy, %:22;

ox oy 0z

X=k(x,—x); Y=k(y,-»); Z=k(z,—-2);

X +y +z2°-R=0;

k(x, —x) _ k(y,—¥) _ k(z, —z2)

2x 2y 2z

Two positions of rest are obtained:

4 x,R YR z,R
1 4 s
VE + iz AW ye bz Ax +yi vz

4l - X R B YoR B z,R
2 2 2 2’ 2 2 2’ 2 2 2
\/x0+y0+zo \/x0+y0+20 \/x0+y0+20

Note

1. The segment A;A; is the diameter of the sphere passing through Ay;

2. If Ay coincides with the center O of the sphere, the material point A is in a state
of rest at any point of the sphere.
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Example 2.
Determine the force F acting on the material point A situated on a inclined plane
(Fig. 5.4).

Fig. 5.4 Material point on an inclined plane

The condition of equilibrium F + G + N = 0 can be written:
(ZXI. :O) Fcosa—Gsina=0
(ZYI = 0); N-Fsina—-Gceosa=0

If follows that:
F=Gtana; N=G cosca.

5.3.3. Rough constraints produced by a surface or a curve

In this case the reaction force is made of two forcesR=N +T. The vector

component T is opposite to the tendency of sliding (Fig. 5.5a) and is called
friction force. By experiments, Coulomb showed that

\ﬂ < ym (5.10)

where u is by definition the coefficient of friction.

A
Y7,
HO \/
T O S
a) d b) >

Fig. 5.5 Material point on a rough surface (a). Sliding friction coefficient as function of velocity (b)
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There are in fact a coefficient of static friction yy and a coefficient of kinetic
friction u. The static friction is the friction produced between the material point
and the curve or surface at relative rest and the kinetic friction is the friction
occurring in the relative motion between the material point and the curve or
surface. The coefficient of static friction is larger than the coefficient of kinetic
friction (Fig. 5.5b). Theoretically this coefficient is any positive real number and
experiments with values of uy>1 can be easily imagined. However for most
practical applications this coefficient is sensibly less than one.

By definition the angle:

Q=arctg U (5.11)

is called angle of friction. The significance of ¢ is the following: let a be the angle
of the reaction R to the normal to the surface (or to the normal plan to the curve).
Then ¢ is the largest possible angle a.

If the material point is constrained to move on the surface f(x,y,z)=0, the angle o
between the reactionR and the normal to the surface, the same as the angle
between force ' and the gradient of f{x,y,z), results from the scalar product

F-gradf = ‘ﬁ‘-\gradf\-cosa and because o < ¢, then

COSOL > COSQ = ! = ! and it follows that

\/1+tg2(p J1+u’

‘Xaf f+Zaf
ox oy 0z \/ (5.12)
1
Ny +yz+sz (2 ] (2]
Ox oy 0z

If the material point is constrained to move on the curve defined in the parametric
formas x=x(4), y=y(4), z=2z(4), the angle #=90" — & between the reaction
R and the tangent to the curve can be easily determined. This f angle is also made

between the force F and the tangent unit vector (which is defined as 7 = % ). The
scalar product F7 = ‘F ‘ |7|cos B allows getting the angle B. Sincea <o,

then%—ﬂéqp, orﬂzg—go, which leads to

tan @

J1+tan’ @ .

It follows that for equilibrium on a rough curve, the following condition must be
met:

cos Scos(ﬁ/2—(p) = cos f<sing=
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X@+Y8—y+2%
oA

0L o4 < H (5.13)
NZP+ Y+ 77 o 2+ Py 2+ (&1 e
oA oA oA

By definition the cone whose apex coincides with the material point and which is
delimited by the support lines of the reaction forces at their maximum inclination
relative to the normal direction to the surface (or respectively to the normal plane
to the curve) is called the cone of friction. The axis of the cone of friction is the
normal to the surface (or respectively the local tangent to the curve). The angle
between the generator and the axis of the cone is ¢ for a surface and n/2-¢ for a
curve (Fig. 5.6).

normal plane

friction cone

~

Fig. 5.6 Cone of friction for a surface (a) and for a curve (b,c)

C

/
s 7

The following rules can be deduced. The material point is at rest on a rough
surface if the line of action of the applied force F is situated inside the cone of

friction. It is at rest on a rough curve if the line of action of F is situated outside
the cone of friction.

Example 1.
Determine the positions at rest of a material point constrained to move on the

rough sphere x’+y°+z>-R?=0), if the coefficient of friction is u and the weight of the
material point is G.
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The following equations can be written:
X=0,Y=0 Z=-G; f(x,y,z)=x"+y’ +z" —R*
ﬁ=2x; g:2y; §=2z
ox oy 0z
|— G 2Z| 1
> z|2

R
Go4x> +4y* +47° |1+ N

R R : C
— . The material point is at rest on two
J1+p? J1+p?
zones of the sphere, one is up on the exterior of the sphere and the other is down on

the inside (Fig. 5.7).

If z>0, z> ;if z<0, z<—

,,,,,

Fig. 5.7 Equilibrium of a material point on a rough sphere

The equilibrium zones can also be obtained as intersections of the sphere with the
cone of friction as shown on the same figure.

Example 2.
Determine the positions at rest of a material point constrained to move on the

rough helix:x=R cos@, y=R sin6, z=(h/2x)0, if the coefficient of friction
is u and the weight of the material point is G.

The following equations can be written, taking 0 as parameter in place of A:
X=0,Y=0,Z=-G, x'=—Rsin0, y'=Rcosb, z'=h/2rx.
h

-G—
27

<M
2 2

G\/(—Rsine)z+chosze+;2 ep
T
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-l y

\ 4

9 V4
X
Fig. 5.8 Equilibrium on a helix
h LK : > 2nR .
Vh* +4°R> 1+ h

If this inequality is verified, the material point remains at rest if placed in any point
of the helix. If it is not verified, then no position of equilibrium exists for the
material point on the helix.
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6. SYSTEMS OF SLIDING VECTORS

6.1. The property of sliding vector for a force acting on a rigid body

A body which, despite the action of forces, does not undertake any deformations
(i.e. in which the mutual distances of the points of the body do not change) is a
rigid body. Particularly, two forces acting in A and B, equal in modulus but
opposite in sense and having the line of action AB, have no effect on the rigid body
(Fig. 6.1a)

|

F
b) ¢) v d)

Fig. 6.1 Forces as sliding vectors acting on a rigid body

Consider a force F acting in A on the rigid body (Fig. 6.1b). Two forces are

introduced: —Fin 4 and F in B (Fig. 6.1c). The opposite forces F and —F acting
in 4 (Fig. 6.1d) can be eliminated. The system of forces shown in Fig. 6.1b, and
Fig. 6.1c are evidently equivalent. Therefore, if A4, the point of application of a

force F, is displaced in B on the line of action of the force, its effect on the rigid
body is the same. The property of being sliding vectors for forces acting on a rigid
body is a direct consequence of these operations.

6.2. The moment of a force with respect to a point

By definition, the moment of a force with respect to a point O is a vector
equal to the vector product of the radius vector 7 of the point of application of the
force and force I?(ﬁg. 6.2) 1.e.

MO(F)zer. (6.1)
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Fig. 6.2 The geometric configuration for the moment of a force

It follows that M (1?) is perpendicular to the plane determined by the point O and
the line of action of the force. The absolute value of M (F) is (see Fig. 6.2).

‘]\_40 (F)‘ =[r]-[F]-siner=[F|-a. (6.2)

that is to say, the product of the absolute value of the force F and the “arm” of the
force with respect to point O. The “arm” is the length of the perpendicular from O
onto the line of action of the force.

6.2.1. Moment of a sliding force
If the force F is sliding on its line of action from 4 to B (Fig. 6.3) the moment
M (17) does not change, because OB = 04 + E, or ¥ =7 + AB and

Fig. 6.3 The moment of a sliding force

;xf:<;+E)xf:;XF+EXF:;><F=M0(?) (6.3)

(Ex F =0, because AB and F are two parallel vectors).
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6.2.2. Variation of the moment with the position of the pole

If the moment of a force is determined about another point (pole) denoted P, its
value will change to:

Mo (F)=rxF =(PO+7)xF = PO F + Mo (F) = Mo (F)-OPxF (64

Fig. 6.4. Variation of the moment with the point of evaluation

6.2.3. Characterization of a sliding force

If X, Y, Z are the projections of 7 and X, Y, Z are the projections of F on the axes

of a Cartesian coordinate system Oxyz, the projections of Mo (F ) are:

i j ok
Mo(F)=rxF=|x y z|=(yZ=2Y)i+ (X =xZ)j+(x¥ = yX)k. (6.5)
X v z

It follows that a sliding force F may be characterized by six scalars, the
projections of F and the projections of M (F), i.e.

X, Y, Z, M, =yZ~zY, M, =zX~xZ, M, =xY-yX.  (6.6)

It is easy to verify that these six scalars are not independent because they
satisfy the identity:

XM, +YM, +ZM, =0. (6.7)

This identity represents the property of orthogonality of vectors M, (]7 ) and F .

6.3. The moment of a force about an axis

By definition the projection on a given axis (A) of the moment M (f) of a

force F with respect to point O on this axis is called moment of the force about the
axis.
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Fig. 6.5 Moment of a force about an axis

The value of the moment M, (f) is (see Fig. 6.5):

M, (f) = ‘Mo (f)‘ ccosa =M (F);: (er)-;z (;,f,;) (6.8)
where u is the unit vector of the axis. If z_f(x,y,z), F(X, Y,Z) and
u(cosa,cos B,cosy) then Mo (I?) may be written in the form:

X y z
M, (F) =lx v z| (6.9)

cosa@ cosf cosy

From the known proprieties of determinants it easily follows that:

(F,F,E):(&,Z,F):(F,u,r). (6.10)

The moment of the force F about the axis (A) does not change if the point O is
replaced by O’, because 7 =0'A=0'0+04=0'0+F (see Fig. 6.5) or

(m+r,F,u) :(m,F,L_t)+(r,F,u) = (;,F,;) =M, (F);

The moment of the force about the axis (A), M, (F) = (;,F,L_t) is null if the three

vectors 7, F,u are in the same plane i.e. if the line of action of the force and the
axis are in the same plane. Three possibilities exist:

a) The line of action of the force intersects the axis;

b) The line of action of the force and the axis are parallel;
¢) The line of the force and the axis coincide.
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6.4. Elementary operations with sliding vectors

Elementary operations with sliding vectors are those operations which transform a
system of sliding forces into another equivalent system of sliding forces. There are
two such operations:
a) The sliding of a force along its support line (direction of action)
b) The replacement of a concurrent system of forces by another one having the
same resultant force vector, defined in the next paragraph.

6.5. Resultant force vector. Resultant moment vector

By definition the resultant force vector is the vector sum of a given system of
sliding forces. The resultant moment vector is the sum of the moments of all the
forces of a given system of sliding forces with respect to a chosen point O, called
pole. Their expressions are

R=>F; M,=)7xF. (6.11)

Note that in general it is incorrect to call these vectors “resultant force” or
“resultant moment” since in general none of them is the global “resultant” but only
together represent the resultant action on a given body.

It is easy to verify that the resultant force vector and the resultant moment vector
are invariant to elementary operations on sliding forces.

6.6. Variation of the resultant moment vector as the pole changes
Consider another pole P to compute the moments of forces about it. Since
PAi =04 + PO or 7/=7+ PO, it follows (Fig. 6.6) for the moment:

Fig. 6.6 Change of pole for the moment of a force

MP:ZFI.' xE:Z<Z+P_O)xE:ZExE+ZP_OXF;
B i_ _i i i (6.12)
=M,+POx> F

Hence the moment about another pole changes by subtracting the moment of the
resultant force vector from the moment already determined at the location of the
initial pole:
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M,=M,-OPxR. (6.13)
The following corollaries are consequences of this formula:
a) If R=0andM_, =0, then in any point P of the space R =0and M, = 0
b) If R=0and M, # 0, then in any point P of the space M, = M ,. In this case

the resulting moment vector is a free vector. 3
c) If the new pole P belongs to a segment OP parallel toR, then

OP x R = 0 and the resulting moment vector remains unchanged: M, =M, .

d) The scalar product between the resulting force vector and the resulting
moment vector is a constant.

Indeed, if the projections of the two vectors are R =Xi +Yj+Zk and
M,=M,i+M,j+M ..k , by scalar multiplication of (6.12) by R, one gets

R-M,=R-M,~R-(OPxR)=R-M,=XM,, +YM,, +ZM,  (6.14)

The expression R-M, = XM, +YM, +ZM,,, is called the invariant trinomial.

e) The projection of the resultant moment vector along the direction of the
resultant force vector is a constant.
Indeed the projection made at a pole P and at pole O are

%-MPZ‘MP‘COSﬂ; %-Moz‘]\?()‘cosa (6.15)
and from (6.14) it follows
‘Mp‘cosﬂz‘ﬂo‘cosa:Mr. (6.16)

The common projection is

R XM, +YM, +ZM
M —ir, B o T o A o (6.17)

TR X v ez

6.7. Central axis of a system of sliding forces

The question of finding the locus (geometric location) of poles about which the
resulting moment vector is a minimum will be addressed in the following. The

resulting force vector R=Xi +Yj +Zk and the resulting moment vector
M,=M,i+M o TM o.k are considered already determined with respect to a

coordinate system having O as origin. The resulting moment vector about another
pole P(x,y,z) is
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i

N

M,=M,~OPxR=M,7+M,j+M,k-

N S~

X
¥ - (6.18)
= (M, —yZ+2Y)T +(M,, —zX +xZ) +(M,, - xY + yX )k

It has been proven that the projection of A, along the direction of R is a constant.

Fig. 6.7 Projection of the resulting moment vector along the resulting force vector

As shown in Fig. 6.7, if the projection along a given direction is to remain
constant, the minimum resulting moment vector having that projection is one
having its modulus exactly equal with the projection. This can only be possible if
the resulting moment vector is parallel to the direction of R. This last conclusion
can be expressed as M,||R or, by the proportionality of the scalar projections

from (6.16) and those of R:
M, —yZ+z¥Y My —zX+xZ M, —xY+yX
X Y Z

(6.19)

This last formula represents the canonical equation of a straight line. The points in
space having the requested minimizing property have been thus proven to belong
to a line, called central axis. Another conclusion from (6.17) and (6.19) is that the
minimum obtainable moment is M.

6.8. Reduction of systems of sliding forces

By computing the resulting force vector and the resulting moment vector, one of
the next four cases can exist:

1) R=0and M, = 0 : The system is equivalent to zero (no) acting forces.

2) R#0and M, = 0: The system is equivalent to a resulting force passing through
the origin O of the chosen system of coordinates.

3) R=0and M, # 0 : The system is equivalent to couple of forces acting in a plane
perpendicular on the obtained resulting moment vector.
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4) R#0andM,#0: Two possibilities exist in this case, depending on the
projection of M ,along R. This projection is directly related to the scalar product
of the two vectors, so the possibilities are:

a) R-M,=0. Means that there are points in space about which the
minimum moment is zero. In other words the system is equivalent with a single
force R, only placed on the central axis. In this case R is called resulting force
because it replaces the whole system of sliding forces. If 7is a position vector
reaching the central axis, then the resulting moment vector is M, =7 xR . In this
case applies the Varignon theorem: “The resulting moment vector equals the
moment of the resultant force”.

b) R-M_,#0. The system is equivalent to a wrench, that is a force R

acting along the central axis of the system and a couple of forces acting in a plane
perpendicular to that axis, having as modulus

_ R XM, +YM, +7IM
M =MO£= s o . (6.20)

' R Jx iy 422

6.9. Particular systems of sliding vectors

6.9.1. A system of concurrent forces
The systems of forces have their directions concurrent in a point O. It follows that

R=>F; M,=0 (6.21)

A system of concurrent forces is equivalent either with a resulting force R # 0or
is equivalent with no acting force R = 0.

6.9.2. A system of coplanar forces
The forces are all included in a plane. Be it the Oxy plane. It follows that:

B
M, =ZF,-><F,~ =Z(>@-Yi - Xk

It follows that in any caseR-M,=0. So, the system of coplanar forces can be
equivalent with:

- No acting forces if R =0and M,
- A resultant force if R # 0.

- A couple of forces if R=0and M, #0.

(6.22)

0
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6.9.3. A system of couples of forces

A system of couples of forces can be seen as pairs of parallel, opposite forces
having the same magnitude. Consequently,

R=0; M,=> M, (6.23)

Such a system of couples can be made equivalent with:
- No acting forces if R =0and M, =0
- A couple of forces M, = Z]V[i .

6.9.4. A system of parallel forces

All the forces in the system are parallel with a direction given by unit vector
u which in general does not coincide with any of the axes of a chosen coordinate
system.

It follows that

" (6.24)

In any case R-M_,=0because R has been proven to be parallel to iz and M ,is

perpendicular tou .
Such a system of forces can be equivalent with one of the following:

- No acting forces if R=0and M, =0.

- A resultant force if R # 0 either passing through the origin or placed along the
central axis.

- A couple of forces if R=0and M, #0.

6.9.5. Center of parallel forces

Consider the case R # 0for a system of parallel forces. The central axis can be
determined using the theorem of Varignon, since in this case R- M, =0.

A7IO:(ZEEJXL_;:FXEz?x(ZFijﬁz(z}ZjFxﬁ (6.25)

i i

Taking the first and last expression of these equalities and passing both expressions
on one side, it can be written:

KZEZJ—(ZEJF}EJ. (6.26)

i i
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This formula states that in the general case the two vectors involved in the vector
product are parallel, fact that can also be expressed as:

KZ Fl.?l.j —~ [25]7} =i, (6.27)
in which A is a scalar parameter.

Another scalar parameter can be defined as = — , which allows to write the

I
2F

vector position of an arbitrary point of the central axis:

)
[ —a )7y (6.28)

25

The first term represents the position of a point of the axis. Its position vector is

[Z sz

1

As it can be easily seen, the central axis will pass through this point for any « .
This means that if the forces applied in each point will all change direction
remaining parallel, the new central axis will pass through the same point. For this
reason this point is called the center of parallel forces.

The coordinates of the center of parallel forces are, as a consequence of (6.29):

SEyv  YEn  XF
' ‘ — (6.30)

§=’ZE;77=’ZE;§=ZE

A useful application is to determine the center of gravity. If the gravity forces
applied to a system of material points can be assumed to be parallel, then

F =G, =mg and the above formulas can be applied. The center of gravity is then
Zmi‘xi Zmz‘yi Zmizi
g = Z mi 5 ]7 = Zmi ) é’ = Z mi .

i i

(6.31)

Compared with the mass center, the coordinates are identical in the assumed
hypothesis.
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6.10. Distributed forces

In most technical applications, forces are applied not in a point but on an area.
Examples are snow on a roof, forces produced by air/water pressure applied on a
body, etc. For two-dimensional applications, this corresponds to application of a
force along a line of arbitrary shape (Fig. 6.8).

The distributed force in a two-dimensional application is represented by p(x)
measured in N/m and in general this distributed force is not normal to the line,
making an angle 0 with the reference direction (Ox in Fig. 6.8b). Pressure and
contact forces are however normal to the surfaces and friction or viscous drag force
are tangent to them. The problem is to find the equivalent system for the
distributed force.

A A
g S
T
4) 0
ds
y
O 0) X,

Fig. 6.8 Distributed force

The elementary forces and moment applied on an elementary arc of length ds (Fig.
6.8b) are

dX =—p(s) cos(H(s))ds
dY =—p(s)sin(0(s))ds (6.32)
dM ,, = xdY — ydX,
The resulting force vector has two components and the moment one projection:
z |

X =—| p(s)cos(6(s))ds
A a B .‘l; )

Y = —j p(s)sin(0(s))ds

_ Ez .
0 F\ ’ MOZ:Jp(s)[y(s)cos@(s)—x(s)siné’(s)]ds

0

C (6.33)
X/ a Example 1.

R central axis Consider two  forces of modulus

A 4 —

\/
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| 5| = P\/3 and |F,|= Py2 acting as shown in the figure, on a cube of edge a. Find
the equivalent system.

The projections of the forces are:

F _\F\“E-_PﬁM_Pth—PE

1 AC \3a?

CB \/f—a17+0]_'+al;

E:‘E‘::P 2 :—PZT-FPIF
CB‘ 2a’
The moments produced by the forces are:
i 7k
M0(7)=0ij=o 0 a|=-aPi +aPj
P P -P
i J k
MO(_Z)zﬁxFl: a a O|=aPi—aPj+aPk .
-P 0 P
o R=F+F=F;
The effect in O is a “wrench” : § _ _
M, =aPk

The scalar product is R- M, =0so the system is equivalent with a force Ron the

central axis:

aP—y0+zP —aP aP—xP
0 P

shown also on the figure.

which is the intersection of planes z=-a; x=a

Example 2.
A uniformly distributed vertical force is applied downwards on a plane inclined by

an angle a, covering a distance d on the horizontal. Find the resulting force and
moment vectors in O.

L
X:—Ipcos(ﬂ/Z)ds =0
0

L
\0=n/2 Y=—jpsin(7r/2)dsz_pL:_p d
0 cos

h L 2 L
) MOZ=Ip[—scosasin(7z/2)]ds—pcosas—
S 2
9) V& X 0 0
\_— d d’ d
=-Pp

—yvZ
2cosa 2
It has been used the obvious fact: x =scosc .
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7. STATICS OF A RIGID BODY

7.1. Free rigid body

A rigid body is said to be free if the possible motions of this body are not subject to
any constraints. A free rigid body has six degrees of freedom: three translations
along the axes Ox, Oy and Oz, and three rotations about these axes (Fig. 7.1).

Fig. 7.1 Possible motions of a rigid body

A system of sliding forces acting on a rigid body is said to be in equilibrium if the
rigid body, initial at rest, continues to be at the rest, afterwards. A system of sliding
forces is in equilibrium if and only if both, the resultant force vector and the
resultant moment vector are zero, i.e. if the system of sliding forces is equivalent to
a zero force. As proof, obviously a zero force has no effect on a rigid body.
Therefore the condition is sufficient. It is easy to verify experimentally that a rigid
body under the action of a unique force, or of a couple, or of a wrench, cannot
remain at rest. Therefore the condition is also necessary.

This condition may be written:

n n

YE=0; Y 7xF=0 (7.1)

i=1 i=1
The projections of these equations on the axes of a Cartesian frame are:

> X =0; 2Y=0; Y7 =0
i=1 i=1 i=1

. ) ) (7.2)
XM, =03 M, =03 M, =0
If the forces lie in Oxy - pllzelme, (7.2.)ll=)]ec0mes: )
SX =0, YV =0 M, =0. (7.3)
If the forces are parallel tolzé)z - axis, 1(217.2) becc;;les:
ilz,. =0;2Ml.x =0; Y M, =0. (7.4)
p P pa
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For a system of forces couples, (7.2) becomes
SM, =0; M, =0;3 M, =0. (7.5)
i=1 i=1 i=1
Consider a free rigid body and N forces of magnitudes F,...,Fy respectively acting
on it. Using the theory of sets of straight lines (Annex), the equations (7.2) may be
written

_al az aN_ _Fl_ _0_

b, b, — - byl F.,l |0

6o oo oenll |- (7.6)
L L o o I, R

m] mz mN

N T N P 2

where a;, b, ¢, I, m;, n; (i=1,2,...,N) are the homogeneous coordinates of the lines
of action of the forces. This homogeneous linear system of equations may have
non zero solutions for F,...,Fy if and only if the rank of rectangular matrix r<N.

It follows then as necessary (but not sufficient) conditions (See also the Annex):

a) If N=1 the equilibrium is impossible.

b) Two forces must have the same line of action.

c¢) Three forces must have their lines of action situated in a plane and these lines
must be concurrent or parallel.

d) Four forces must have their lines of action into the same family of rectilinear
generatrices of a rectilinear quadric; in particular these lines of action may be
concurrent of parallel.

e) Five forces must have their lines of action into the same linear congruence; in
particular these lines of action may intersect two arbitrary straight lines.

f) Six forces must have their lines of action into the same linear complex; in
particular these lines of action may intersect a given straight line or may be parallel
to a given plane.

7.2. The constrained rigid body

A rigid body is said to be constrained if its motions are subject to certain
conditions. These conditions are called constraints. By virtue of the principle of
constraints it shall be assumed that besides the given forces, the constrained rigid
body is acted upon by additional forces called reactions which cause the body to
comply with the constraints. The reactions are generated from those bodies which
limit the freedom of motion for the given constrained rigid body. The other forces
acting on a constrained rigid body will be called active forces (in order to
differentiate them from reactions). If the reactions are added to the active forces,
then the constrained rigid body can be considered as free.
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7.3. Smooth constraints of a rigid body

7.3.1. The simple support

The simple support (or movable support) is a constraint generated by a certain
body supporting another (Fig. 7.2.a).

N

F;

Fig. 7.2 Simple support. a) Two bodies b) Possible motions ¢) Normal reaction

Let O be the point of contact of a given rigid body (I) with another rigid body (II).
The plane Oxy is the common tangent plane and Oz is the common normal in O to
the surfaces of the two bodies. Fig. 7.2b shows the possible mobility of the rigid
body (I) with respect to the rigid body (II): two independent translations along Ox
and Oy axes and three independent rotations about Ox, Oy and Oz axes. Fig. 7.2c
shows the reaction which is called normal reaction. If the constraint is smooth
(without friction) this is the only reaction corresponding to the obstructed mobility,
which is the translations along Oz -axis.

7.3.2. The articulation joint

The articulation joint is a type of constraint joining two bodies, which allows their
relative rotations about a point (spherical joint) or about an axis (hinge).

If the articulation joint is a spherical joint (Fig. 7.3a), then the given rigid body (I)
has three independent rotation about Ox, Oy and Oz axes with respect to the rigid
body (II).

b) Fig. 7.3c shows the reactions R,, R, and R. corresponding to the three obstructed
motions, the translations along the Ox, Oy and respectively Oz axes.

If the articulation joint is a hinge and the lines of action of the forces acting on the
given rigid body (I) lie in the Oxy-plane (Fig. 7.4a) then the given rigid body (I)
has a single possible rotation about the Oz axis, normal to the figure (Fig. 7.4b).
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Fig. 7.4. Hinge. Forces and symbol (a). Possible motion (b). Reactions (c)

Fig. 7.4c shows the reactions R, and R, corresponding to the obstructed motions,
the translations along the Ox and respectively Oy axes.

7.3.3. The rigid fixing

The rigid fixing (or built in mounting) of a beam for example is the fixing of a
beam in such a way that the section at the plane of fixing, is not subjected to any
rotation or translation (Fig. 7.5a).

The given rigid body (I) has no possible motions (Fig. 7.5b). Fig. 7.5¢ shows the
reactions which are three force projections R,, R, and R. corresponding to the three
obstructed displacements along the Ox, Oy and respectively Oz axes and three
projections of a reaction moment Mo, Mo, and M. corresponding to the three
obstructed rotations about the Ox, Oy and respectively Oz axes.

If the forces acting on the given rigid body (I) lie in the Oxy plane (Fig. 7.6a), then
the reaction are (Fig. 7.6b) the forces Ry and R, corresponding to the two
obstructed translations along Ox and Oy axes and the couple Mo corresponding to
the obstructed rotation about the Oz axis.
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Fig. 7.5 Rigid fixing (a). Possible motions: all blocked (b). Reactions (c)

_ F;
Fi
/ / ™
| X m R [ x
Ao \\C Mo “0
F,
a) b)

A\ \

Fig. 7.6 Two dimensional rigid fixing (a). Reactions (b)

7.4. A general theory for smooth constraints of a rigid body

It is possible to formulate a general theory of smooth constraints of a rigid body,

using the concepts of work and power. The elementary work of a force R is, by
definition, the scalar product:

Rdr =R dx+Rdy+R.dz (7.7)
and the power is the time rate of work:
Rv=Rv +Rv +Ryv.. (7.8)
By analogy, the expression for the power produced by the moment of a force is
Mo=M,0 +M,0 +M,o.. (7.9)

A constraint of a rigid body is smooth if and only if the reactions R,, R,, R., Moy,
Mo, and Mo. and the velocities vy, vy, V., ®, @, ©: satisfy as an identity the
condition:

Rv. +Rv +Rv. +M,0 +M, 0 +M, 0 =0. (7.10)

Some examples of smooth constraints of a rigid body are presented on Fig. 7.7.
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Fig. 7.7 Examples of smooth constraints

The slider joint (Fig. 7.7a) allows only a translation about the Ox axis. The only
zero reaction is R,=(0, but the velocity vy is arbitrary. There are no other
displacements, so that formula (7.10) is verified.

For the cylindrical joint (Fig. 7.7b) which allows a relative rotation about the Ox —
axis and an independent relative translation in the direction of this axis:

Ry =0, Mox=0, v,=0, v,=0, ©,=0, ®,=0 and again the formula is verified.

For the helical joint (Fig. 7.7c) which allows a relative screw motion v,=k.w;,
v, =0, v.=0, 0,=0, ».=0, so that (7.10) becomes: (R k+ M, )o, =Orelating the

axial force in the screw to the applied moment.

Example 1.
Determine the reactions for a beam freely supported at its ends, having a span
[=10a, carrying the loads shown in Fig. 7.8.

4P op 2P

o . }4P
AL b b s |

27
7 4a 2a | 2a | 2a N NZI

|« > < P »

Fig. 7.8 A bar acted by distributed and concentrated forces.

Two normal reactions N; and N, are replacing the two simple supports. The
conditions of equilibrium are:

(ZX,:O):O:O
(XY =0):N,+N,—p4a—4P-2P=0 (7.11)
(XM, =0):N,-10a—p-4a-2a—4P-6a—-2P-8a =0
The values of the unknown reactions N; and N, are N, = 2P+32pa,
N> = 4p+0.8pa.

60



Example 2.
Determine the reactions for a rod which is simply supported in B and hinged at A.
It has a weight G applied at its middle (Fig. 7.9).

\\

Fig. 7.9 A hinged and supported rod

The reactions Ry and Ry are replacing the hinge at A and the reaction N replaces
the support in B. The conditions of equilibrium are:

(XX, =0):R -N=0
(XY =0):R -G=0 (7.12)

(> M, =O):N~Zsina—Gé-cosa=O

G ;R =G.

The values of the unknowns R, ,R, and Nare: R =N = ; R
: 2tana

7.5. Rough constraints of a rigid body

7.5.1. The sliding friction

Two bodies have rough surfaces and are in contact in a common tangency point. If
a tendency to slide occurs between these surfaces, sliding friction occurs (Fig.
7.10). As in the case of a material point, the sliding friction may be replaced by a
force T tangent to the two bodies, lying in the common tangent plane OXy.

Tendency
of motion

Fig. 7.10. Sliding friction force between two rigid bodies
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The orientation of the sliding friction force T acting on the given body (I) is
opposite to the sliding tendency of this body with respect to body (II). The

magnitude |7 | is limited to:

7| < | N, (7.13)
in which g is the sliding friction coefficient for the given pair of bodies (I) and (II)
at the point of contact O.

Example.
A ladder of weight G is
resting on a rough floor
(coefficient of sliding friction
ur) and against a vertical
rough vertical wall
(coefficient of sliding friction
X u2). Determine the angle o for
> which the ladder is at
equilibrium (Fig. 7.11).

777777

A
AN

Ni

Fig. 7.11 A ladder in rough contact with two surfaces

The simple supports A and B can be replaced by the normal reactions N; and N,
and by the friction forces T, and T,. The equilibrium equations are:

3 )
> M, =0: chosa — N, Isina —T,/Icosa =0
i=1
and the friction forces are limited by the inequalities: 7, < 4 N,; T, < 1, N,. From
the first three equations it follows that

G G
I'=N,;, T,=—-N,tana; N, :E+N2 tan o;

1 22 1

The last two inequalities become:
N, <p (g+ N, tanaj; %—Nz tana < 1, N, or

N, (1- 4, tana)S,ulg; %SNZ(,LI2 +tana)

. : . 1- .
Eliminating N, it follows for the angle a the condition: zga ZM, which
H
shows that the equilibrium is more sensitive to the friction coefficient with the
horizontal surface (u;) than to that of the vertical surface (u>) .
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7.5.2. The rolling friction

The rolling friction is the friction occurring when a real deformable body is rolling.
The rolling motion can be considered as an instantaneous rotation about an axis
lying in the common tangent plane, so the rolling friction may be replaced by a
resistant couple, whose moment vector M acts along this axis and whose sense is
inverse to the rolling tendency of the given body (I) with respect to the body (II).
The magnitude is limited by

|41, | < s| N, (7.14)
where s is by definition, the static coefficient of rolling friction for a given pair of
bodies (I) and (IT) at the point of contact O.

Tendency
of motion

Fig. 7.12. Rolling friction moment and tendency of motion

Note that the static coefficient of the rolling friction s is measured in units of
length, while the coefficient of the sliding friction u is a real number. The physical
explanation of this moment is the asymmetrical deformation of the body and the
surface, which in turn shifts the line of action of the normal reaction by a
maximum distance s. Since the bodies must be rigid according to the hypothesis
from the first chapter, this effect is taken into account by introducing the rolling
friction moment.

Example 1. The pulled wheel.
A wheel of weight G and radius R is pulled by a horizontal force 7. The
coefficients of sliding friction and rolling friction are respectively x and s.

Determine the magnitude of the applied force F for equilibrium condition (Fig.
7.13).

The simple support A is replaced by a normal reaction N, a tangential force which

is the sliding friction T, opposite to the sliding tendency and the resistant couple of
the rolling friction A opposite to the obvious rolling tendency.
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Fig. 7.13 The equilibrium of a pulled wheel. Acting forces (a), distributed normal reaction (b), free body
diagram (c)

The conditions for equilibrium are:

2 2 2
>X,=0: F-T=0;, >Y=0: N-G=0; Y>M, =0: M,-FR=0

i=1 i=1 i=1
and the inequalities, valid in conditions of equilibrium: 7 < uN; M <sN.
From the first three equations, it follows that ¥ < 4G and FR <sG.

If s/R < u then equilibrium is possible for F < %G.
If s/R > u then equilibrium is possible for F < pnG.
In general the equilibrium is possible only for ' < min( ,uG,%Gj .

Example 2. The motor wheel.

A wheel of weight G and radius R is pulled by the horizontal force F and a motor
couple M is acting at the wheel axis. The coefficients of sliding friction and
rolling friction are respectively u and s. Determine the magnitude of the applied
force F at equilibrium (Fig. 7.14).

The simple support in A is replaced A by: a normal reaction N, the sliding friction
T opposite to the sliding tendency and the resistant couple of the rolling
friction M , for which there are two possible senses.

Fig. 7.14 The equilibrium of a motor wheel. Acting forces and motor moment (a), free body diagram (b)
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It is assumed here that the motor couple prevails and the tendency of rolling
corresponds to its action.
The conditions for equilibrium are:

>M,=0: M, +FR-M, =0

i=1
and the inequalities, valid in conditions of equilibrium: 7 < uN; M <sN.
From the first three equations it follows that F* < uG; M, — FR < sG .

e : M —sG
In general the equilibrium is possible for”’Tf <FLuG.

If the force F is below the minimum value, the wheel begins to roll under the
action of the motor couple. If on the contrary, it surpasses the maximum value, the
wheel will also slide in the sense of the applied force.

7.5.3. The pivoting friction

The pivoting friction is the friction occurring during the relative rotation of two
bodies, about a common normal to their surfaces in contact, or if such a tendency
of motion exists (Fig. 7.15). As the pivoting motion is a rotation about an axis, the

pivoting friction may be replaced by a resistant couple, whose moment vector M
V4

acts along the common normal to these surfaces and whose sense is inverse to the
pivoting tendency of motion of the given body (I) with respect to the body (II).

Tendency
of motion

\ A=

Fig. 7.15. Pivoting friction moment and tendency of motion

The magnitude | M ,| of the pivoting moment is limited by:
|47, < u, |N|. (7.15)
In some technical cases, a vertical shaft is supported by a pivoting friction bearing.

It is possible to obtain and explicit expression of the pivoting friction coefficient
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Uy as a function of the coefficient of the sliding friction x and of the radius R of the
bearing if we adopt certain hypotheses, namely if the pressure p and the static
coefficient of the sliding friction are considered to be constant on the surface of
contact between the shaft and the bearing (Fig. 7.16). Using these hypotheses it

follows that p = Lz so that
TR

JRE— N 2 R
‘M :IrypdS:Ury 2ra’mhé’z’u—]\iJ-dﬁj-rza’r
P lmax S 7Z-R 7Z-R 0 0 (7 16)
uN 27R* 2 2 '
= =— uNR = =—uR
TR 3 3 a o 3 a
and (7.15) becomes
) _
‘Mp‘gg,uR‘N‘. (7.17)
- A
A
I
R
L
A ;
/
Fig. 7.16. Pivoting friction for uniform pressure on a cylinder with plane circular cap
A Example.
N A vertical shaft has a hemispherical cap of
R radius R and the distributed normal reaction
J — force is defined byp(@)=p,cos@, in
AM— which 6 is the angle to the shaft axis (Fig.
? 7.17). Find the pivoting friction coefficient
< Uy, as a function of the coefficient of the
fi % R Y sliding friction .
oA
xy pol O

Fig. 7.17 Pivoting friction of a shaft with hemispherical cap

The distributed force produces an elementary vertical force, which is a projection
on the Oz axis of the elementary normal force:
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dN = pdScos@ =(p,cos0)(2zRsin@-RdO)cos 6 = 7R’ p, (2cos’ Osin 0d ) ;
/2

0e [O, %} .Consequently N = 7R’ p, (2 j cos’ @sin 6’d6’} and substituting cos@=u,
0

1
the integral becomes N =27Rp, [u’du = %”Rzpo, from which p, = % ]1\;2 :
0 T

On the other hand the elementary pivoting moment is
dM , = uzR’ p, (2cos® @sinOdO) Rsin O = %ﬂR3p0 (sin*26)d8, so that

2
:,L17%R3p0 :,u?—ZRN, from which p :%yR =0.589 uR <§yR. The

pivoting friction coefficient is smaller for the same materials and radius than the
cylindrical pivot with plane circular cap.

M,

7.5.4. The friction between shaft and bearing

The relative movement of a shaft with respect to a journal bearing is a rotation.
The friction between a shaft and the bearing may be replaced by a moment vector

ATf acting along the axis of the shaft and whose sense is opposite to the possible
rotation (Fig. 7.18).

X
é Tendency of motion due to
» external causes (not shown)

o
2
2

Fig. 7.18 Friction between the shaft and the journal bearing.

The magnitude of this moment is limited to:
(M| < g, R+ M), (7.18)
where u,is the coefficient of friction in the shaft, r is the radius of the shaft,

‘E‘ =+ H?+V? is the magnitude of the reaction force in the journal bearing and

M,, 1s the moment of friction if the bearing is tightened. If the bearing is not
tightened (7.18) becomes:

(M| < 1,r|R|. (7.19)
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Example

A fixed pulley of radius R and weight G is used to maintain in equilibrium a
weight P with an applied force F. The axle of the pulley has a friction coefficient
ur. Find the magnitude of the applied force at equilibrium (Fig. 7.19).

The hinge is replaced by the
— = vertical V and horizontal H
\Y% components of the reaction
My force. The friction couple M is
assumed to be as indicated in
the figure, but the opposite
G sense 1is also possible since
there is no unique tendency of

motion.

|
vP 11_)

Fig. 7.19 A pulley with friction in the bearing

The equilibrium conditions are:

X =0: F-H=0

i

M

1

Y=0: V-G-P=0
1

1

S

i

>M,=0: PR+M,~FR=0

i=1

w ol

and the friction couple at equilibrium is limited to M, < u NH* +V" .

Replacing in the inequality the forces from the equilibrium equations, it can be
written:

2 2
F—Ps%\/ﬁ +(G+P) or F{l—(%) }—2FP—(%] (G* +2GP) <0

The mathematical solution is represented by forces F between the roots of the
associated algebraic equation:

P+ P 1[1- 515 (G + 2GP |
poPENP ] lﬂgzﬂ( i )inwhichﬁ:%.

Since one of the roots is negative and a cable can be only tensioned, the effective
solution is
P+P* +[1- p*] g (G* +2GP)

1- B '
For u/=0, the unique solution F=P remains possible and the friction moment
vanishes.

0<F<
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8. STATICS OF SYSTEMS OF MATERIAL POINTS AND RIGID
BODIES

8.1. Conditions of equilibrium

A system of »n material points A,i=12,.,n 1is considered. Denoted as
]?l., i=1,...,n, are the external forces acting upon these material points (the forces

produced by interactions with material points or bodies not belonging to the
considered system). The forces ; (i, j =1,2,...,n;i # j) are called internal forces

and occur in pairs due to the principle of action and reaction: Fijacts on the
material point 4;, being oriented towards the point 4; and F’j = —131.1, , in which F} is

the force acting on the material point 4;. It follows that:

"+ F, =0; PxF +7xF =0. (8.1)

ij Ji Ji

=

The system of forces acting on a system of material points is in equilibrium if and
only if the forces acting on each material point are in equilibrium.

It follows the necessary and sufficient conditions:

F+YF =0; i=l..n, (8.2)
j=1

written using the convention F =0; Vi=1..n.

It is possible to obtain necessary equilibrium conditions for the external forces F
by eliminating the internal forces in (8.2):

a) By adding these equations;

b) By vector multiplication of these equations by 7 and adding afterwards the
resulting equations. The results are:

n n

SE+YYF=0; YixF+YY7xF =0 (8.3)
i=1 i=1

i=1 j=1 i=1 j=1

The relations (8.1) can be rewritten by summation:

n n

YO F, =0; XY 7xF, =0 (8.4)

i=1 j=1 i=1 j=1

and (8.3) becomes:
YE=0, YrxF=0 (8.5)

Note that the conditions (8.5) for external forces look the same as the necessary
and sufficient conditions for the equilibrium of a system of forces acting on
a rigid body, but these conditions are only necessary for the equilibrium of a
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system of material points. These conclusions are also valid for a system of rigid
bodies.

A system of forces acting on a system of rigid bodies is in equilibrium if and only
if the forces acting on each rigid body are in equilibrium.

The conditions (8.5) are only necessary but not sufficient for the equilibrium of a
system of rigid bodies. The conditions (8.5) express the Principle of Rigidity:

If a system of material points or rigid bodies is in equilibrium, then the system of
external forces is equivalent to zero.

This is valid for any system which may be a part of a rigid body, or a piece of an
elastic material, or even a volume of fluid.

8.2. Systems of trusses. Frames

8.2.1. Mobility analysis

A system of perfectly rigid bars (trusses), pin-connected and forming as a whole a
rigid body is called a frame. In Fig. 8.1 is shown a simple frame (or truss), as used
in bridges. It consists of steel gird riveted together at the joints.

777777

Fig. 8.1 A system of trusses

For the mathematical approach the system is approximated as follows:

a) The girders are treated as weightless rigid bars (trusses);

b) The joints are supposed to be smoothly working hinges. Each bar is in principle
free to rotate about the pin joints without any resisting couple, but in general the
geometrical configuration will not allow it. The joints of a frame are also called
nodes.

In the following a plane frame is considered. Taking arbitrary axes in the plane of
the frame, the coordinates of the nodes are denoted by (x;, y1), (X2, 2)ss(Xn, Yn).
There are 2n coordinates altogether.

If the nodes i and j are connected by a bar of length /;, their coordinates must
satisfy the relation

(xl. —xj)2 +(, —yj)2 =1 (8.6)

Thus, if there are b bars, the 2n coordinates are subjected to b relations of this type.

If the plane frame has % hinges (4 fixed nodes) and s simple supports (s nodes are

constrained to move on s lines), there are 2h+s, restricted displacements

conditions. Supposing all these conditions to be independent, if the plane frame is a

just rigid one (i.e the removal of one of its bars destroys its rigidity) these b+2h+s
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independent conditions suffice to determine the whole frame. The 2n coordinates
of the nodes can be determined. Hence

b+2h+s=2n (8.7)
Frequently (Fig. 8.1), h=[, s=1 and (8.7) becomes
b+3=2n (8.8)

Such a just-rigid plane frame is shown in the mentioned in Fig. 8.2a. If b + 2h + s
< 2n, the plane frame is not rigid; it becomes a mechanism as is shown in Fig.
82a,because b +2h +s=4+2:- 1+l =7and2n=2x4=8).1fb+2h +s>2n
the plane frame has redundant bars 1.e. the removal of such a bar will not affect the
rigidity of the plane frame, as it is shown in Fig. 82b (b +2h +s =6 + 2-1+1 = 9,
2n=24=28).

The relations (8.7) and (8.8) are only necessary but not sufficient. Indeed, the
system of bars shown in Fig. 8.2c satisfies the relation (8.7) (b +2h +s =9+ 2- 1
+ 1 =12; 2n = 2- 6 = 12), but it is not a just-rigid plane frame. In fact it is a
mechanism with a redundant bar.

Also, the system of bars shown in Fig. 8.2d satisfies the relation (8.7) (b + 2h + s
=2+4+22+0=06,2n=23=06),but it is a critical system (it has infinitesimal
displacements indicated by the dotted lines), because the b + 24 + s conditions are
not independent in this case

For example the equations:

(‘xl _xz)2 +(y1 _yz)z :llzz
(x,—x) +(3,-») =0 (8.9)
(x3 _x1)2 +(y3 _yl)2 21321
are not independent if [, =/, +/,,.
a) b) c) d)
D) D)
<, Rd
#77_ 777777 r%rm .V/‘ -

Fig. 8.2 Frames. Mechanism (a), redundant (b), mechanism & redundant (c), critical (d).

Similarly for a space frame the following condition necessary but not sufficient for
its just-rigidity can be obtained

b+3a+s=3n (8.10)
in which b is the number of bars, n i1s the number of nodes, a the number of
spherical articulation joints and s the number of simple supports.
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8.2.2. Tensions in trusses

A just-rigid frame is considered to be fixed by some external constraints so that it
cannot move as a rigid body. Consider that external forces (loads) are applied to
some or all the nodes. Each bar is in equilibrium under the action of the two forces
at its ends. These two forces must be equal in magnitude and act in opposite senses
along the bar, at equilibrium. If the two forces are stretching the bar, the bar is said
to be in tension. If the forces are pressing the bar, the bar is said to be in
compression. The word tension is used to cover both cases. A plus sign is
associated with tension and a minus sign with compression. For a just-rigid frame
in equilibrium, two problems arise: a) Determine the external reactions at the
supporting joints; b) Determine the tensions in the trusses.

The first problem may be solved if the principle of rigidity is applied. For the
second problem some other methods may be used: analytical method of nodes,
analytical method of sections and others.

8.2.3. Analytical method of nodes

Each node may be considered as a particle in equilibrium, under the action of an
external force and the reactions of the bars meeting in that point. If the frame is a
planar one, all these forces lie in a plane. There are two scalar equations of
equilibrium for each node and thus 2n equations in all, if the number of nodes is 7.
These equations involve 24 + s unknown components of external reactions and b
unknown stresses in bars (% is the number of hinges, s the number of simple
supports and b is the number of bars). Thus the total number of unknowns is 24 + s
+ b and a number of 2n linear equations to find them. Thus, in a just-rigid frame
the problem of finding the external reactions at the supports and hinges and the
stresses in the bars is a determinate problem, because as shown in the previous
paragraph: 2h + s + b = 2n.

Example.
3 The frame in the figure has a vertical force P
S acting as shown. The length of vertical and
a horizontal trusses is a. Find the tensions in all
| trusses.
N4
a 2 a . P . . . .

P Using the rigidity principle, the equations of

equilibrium for the frame can be written with
respect to a coordinate frame with point 5 as
origin and usual orientations:
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2 A

S X =0: H-N=0 ‘

P \Y

: 3 5

;x:o. V-P=0 ;e

2

M =0: 2aP—aN =0

; 10 1 ’ N

4

so that N=H=2P; V'=P. l )
P

The forces acting on each node are assumed to be pulling the node, which
corresponds to positive tension in the rods.

The equilibrium conditions for node 1 are:
3
X =0: T, +T]3cos%=o
i=1
3
Y =0: 7“13sin£—P:0
T 4

i=

It follows that7, = V2P; T,, =—P,1.e. a tension and a compression.
For node 2 equilibrium equations are:

It follows that both 2-4 and 1-2 trusses are compressed: 7,, =7, = —P and the rod

2-3 is apparently useless since no force is acting on it. In fact considerations of
elastic stability, which are beyond the scope of this work, recommend its presence.
For node 4 equilibrium equations are

3
;Xi:O: —T24—N—T34cos%20

3
> Y =0: TMsin%+T45 =0
i=1
It follows a compression force for the truss 3-4 and a tension force for truss 4-5:

T34:_\/§P; 7:15:P'

For node 5 equilibrium equations are:
4

X =0: -T,+H=0

It follows 7,, =2P and the last equation can be used for checking the value of V.
Node 3 was not used since the rigidity principle solved already for 3 unknowns.
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8.2.4. Analytical method of sections

When it is required only the tension in one or some of the bars, the method of
nodes may prove unnecessarily laborious. It is assumed that the plane frame is
such that it is possible to divide it in two by cutting only three trusses which are
not crossing in a point. If at least two of the bars to cut are not parallel, then it is
possible to determine the tensions in the bars without calculating the stresses in the
remaining bars. The principle of rigidity is applied on the whole frame and again
on one of the two parts.

Example.
3 The frame in the figure has a vertical force P

acting as shown. The length of vertical and
horizontal trusses is a. Find the tension in
the truss 3-4.

Answer.

L) Using the rigidity principle, the equations of
equilibrium for the frame can be written

* with respect to a coordinate frame with

vV point 5 as origin and usual orientations. The

> solution determined in the previous example

H can be used: N=H=2P; V=P.

The frame is “cut” as indicated by the dotted

1 N .
- line.
2 4 Since the rods 3-5 and 2-4 are horizontal, it
P ' is recommended to write the equation of

equilibrium on the vertical direction for the

2
left part of the frame: > Y =0: —T, sin’-— P =0, from whichT,, = —J/2P, the
4

i=1
same as in the previous example but writing a single equation.

Note. These methods are useful only for perfectly rigid rods, hinged at their

respective ends. If elasticity is to be taken into account, other methods should be
used.
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9. FLEXIBLE CABLES

9.1. Basic equations

A flexible cable is different from a rod basically because it can be easily deformed.
In mechanics, this property is idealized and a flexible cable is considered a
material curvilinear line, having no bending rigidity. The word “cable” used in the
following can represent practical applications such as chains, ropes, strings and
threads. The theoretical predictions agree well with the results of experiments
conducted on cables in which the bending rigidity is small.

Fig. 9.1 Elastic cable. Positioning (a) . Section (b). Elementary arc (c).

A flexible cable is at rest under the action of known external forces and the tension
at its ands A and B (Fig. 9.1). The notation s=4M represents the curvilinear
coordinate of an arbitrary point M on the material line.

If the bending rigidity of the flexible cable is negligible, then any cross section of
the cable can be considered to be a hinge.

If the cable is cut in a point M and the right part is removed, then the left part AM

will remain at rest after the addition of the tension 7 =T (s)(Fig. 9.1b). Fig. 9.1c
shows a small arc MN=As of the cable. The forces acting on the arc MN are the
tensions —]_’(s), f(s+As) and the external force AP. The element MN is at rest
under the action of these forces, and so the principle of rigidity can be applied:

—T(s)+T(s+As)+P=0 9.1)
If this equation is divided by As and if As — 0, one gets:
- T(s+As)— T(s) AP o
s s N 9.2)
E% A:I x]_“(s+ds)+E%M_Qx%:6
It follows that:
L p=0; TxT=0. 9.3)



The following expressions have been used:

limT(S+As)—T(s):a’_T

9.4

As—0 AS dS ( )

1im£=;;1im@=i=%;umMQ=6 (9.5)
A0 Ag As—0 AS dS As—0

where ]_9 is the external force per unit length of cable and 7 is the unit tangent
vector at M. Form the formula 7x 7 =0 it follows the colinearity condition:
T=T71 (9.6)

Note that always 7>0 because no compression can exist in a flexible cable. The
first equation (9.3) becomes:

i(T-E)+;:6. (9.7)
ds
Using the Cartesian coordinates, the vector equation becomes
d dx
I T —)+ =
ds ( ds) P
d dy
- T )+ = 0 9.8
PR 9.8)
d dz
—((T-—)+p.=0
T+ p

because

s dr &G G g (9.9)
ds ds ds ds
Using the first of the Frénet-Serret formulas:
dr _1. vV (9.10)
ds p
where p is the radius of curvature at M and v is the unit principal normal vector
(the plane of 7 and v is called the osculating plane). The formula (9.7) can be
cast in the form:

d—T-E+T-l-V+E:6. (9.11)
ds yo,
From this vector formula, the following scalar equations can be obtained:
d_T+pT:();Z+pV:O; pﬁ:O (912)
ds yo,



The last of these equations expresses the fact that the osculating plane at each point
contains the external force vector p .

9.1.1. Flexible cable without transverse external forces

In this case, ; =0 and (9.12) becomes:

ﬂzo;zzo;ozo (9.13)
ds o,

It follows that the tension 7 in the cable is constant. If 7 # 0, l =0. Therefore, the
Yo,

flexible cable has a straight line form. If however 7=0, the curve is arbitrary.

9.1.2. Flexible cable on a smooth surface without applied forces
Since the reaction is normal to the surface, it is also normal to the curve, and so
p.=0. But p,=0according to the last equation (9.12). It follows that
; = p, -V since the principal normal unit vector v of the curve is normal to the

surface at each point. It follows that the curve is a geodesic of the surface. Since

p.=0, ?zO and it follows that the scalar T of the tension is constant; in
s

particular the tensions at the cable ends are equal.

9.1.3. Flexible cable in contact with a rough surface

In this case each elementary arc of the cable is subjected to the action of a normal
elementary force N and an elementary friction force @ (Fig. 9.2):

p,=—N; p. =—0; —uN <D< uN (9.14)

where u is the coefficient of Coulomb for the sliding friction.

Fig. 9.2 Elementary contact forcers and tensions on a cable passing over a rough surface
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The equation (9.12) becomes:

ar -0, Lon=o -x L9, T (9.15)

ds o, p ds ol

Since the elementary arc has a length ds=p-d@, p>0 and 7>0, the last
inequality can be written:

—u-d@ﬁ%ﬁy-d@ (9.16)
and by integrating along the arc of contact 0, the inequality becomes:
—,u-HSanS,u-H (9.17)
T
or:
T -e" <T<T, -e" (9.18)

The rapid increase of the exponential with increasing 6 is of great practical
importance.

Example
Consider a rope wrapped twice around a post, for which the coefficient of friction

is £4=0.5.Then T =T, -¢"* =¢* -T, 2553.5-T,

Thus, a load T can be sustained by application of a force 7y of less than 7/500. A
much greater load might be sustained if the rope were wrapped more than 10 times
around the post. This principle is used to holding ships by ropes passed by mooring

posts and in hoists in which a rope is passed round a revolving drum, the end being
held in the hand!

9.1.4. Uniform heavy flexible cable hanging freely

If the weight of flexible cable per unit length];:constant, the equations (9.8)
become (Fig. 9.3):

i(]ﬂ@):o
ds ds

d dy
T-Z2y_p=0 9.19
ds( ds) P ( )

i(r%):o
ds ds

It has been assumed that the two ends of the cable lie in the vertical plane Oxy.
It follows that:
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dx dz

T —=H; T-—=C (9.20)
ds ds
From the first equation, the tension in the cable can be expressed as :
T=H s (9.21)
dx
y)\
B(X29y250
A(Xl,yl,
: !
X

Fig. 9.3 Cable submitted to a uniform load

Replacing the last result in the second equation(9.20), it can be found:
dz

E =C, =>z=Cx+C, (9.22)

As supposed, the ends A and B of the flexible cable are situated in the Oxy plane
(z, =z, =0,x, #x,), it follows that:

0=C -x,+C,; 0=C -x,+C,= C =C,=0; z=0 (9.23)

Therefore, the curve is situated in the Oxy plane.
The second equation (9.19) becomes:

d dy

Z(H- = 9.24

G o)=p 9:24)
Since H=constant andds = /1 + (y')*dx , this equation may be written:

40 _ by, (9.25)
I+ A

Changing variable y'=sinh(u) =>dy'=cosh(u)du and it also follows for the

denominator \/ 1+(y") = \/ 1+ (sinhu)” = coshu , so that the last formula becomes

duzﬁdx.
H
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By integrating again this last formula, it can be obtained:

u=arg(sinh ') = > + A, (9.26)
a
in which A is an arbitrary constant and
a= 7 (9.27)
p
The relation (9.26) may be written:
y'=sinh(X + A) (9.28)
a
By integrating again, it can be obtained:
y=a-cosh (f + Aj +B (9.29)
a

in which B is another arbitrary constant. This curve is called common catenary

(Fig. 9.4).
C /

S
a X
Y O S

Fig. 9.4 The common catenary

If the axis Oy is the symmetry axis of the curve and the Oxy system of axis is such
that the curve passes through the point (0,a), the constants A and B are equal to 0.
Then, the equation of common catenary becomes:

y=a-cosh™ (9.30)
a

The length s of the cable measured from vertex to a general point is:

X

s=[ds=[ 1+ =] 1+sinh2§dx: joxcoshgdx:a-sinh (9.31)

a

The tension 7 in an arbitrary point is:

T-H-% . Ix() =H. Jl+sinh’ = H.-cosh“=py (932
dx a a
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The slope of the cable in an arbitrary point is:

tan@ = y'=sinh * (9.33)
a

Example
A uniform cable is free under its own weight p=50N/m. The span is 200 m. The

length of the cable is 201 m. Determine the maximum tension (the ends A and B of
the cable are at the same height: y, = y,).

Using the previous formulas it can be successively deduced:

%za-sinh@=100,5 T =py=50-a-cosh@

max

a a
The first equation is a transcendental one. Its solution is numerically determined
with a 1071 precision to be a=577.782780 m. It follows that7. _=29322.908 N.

9.1.5. Approximate formulas for the catenary

The exact formulas presented in the previous paragraph have the major
inconvenient of requiring solution of a transcendental equation, for which only
numerical methods can be used. The next formulas have been established by one of
the authors [7] and have the advantage of precision and simplicity.

a) Suppose the length of the cable L, the difference of height denoted by /4
between the end points A and B, and the horizontal distance d between the two
points, are given. The following equations are derived applying (9.30) and (9.31):

X X
L=s,—s,=asinh—- —asinh—

a 4 (9.34)
h=y, -y, = acosh™® — gcosh ™
a a

Taking the square of both relations and then subtracting them, after simple
operations it is deduced:
2 2 _
L 2h = -2 +2cosh 2
a a

a7 (9.35)

Replacing the given value x, —x, =d, this formula becomes:

2 2
L-h_ cosh(ij—l (9.36)

24’ a

From the series expansion of the hyperbolic cosine, are kept the first four terms:

cosh£:1+i(ij +l(d—j +i(d—j +0 (ij (9.37)
a 21\ a 4\ a 6!\ a a
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Replacing this result in (9.36), an efficient second order equation is obtained for a’:

360a’ (L —h* —d*)—30d‘a’ —d* =0 (9.38)

Example
For the same data as in the previous example, find the parameter a and the

maximum tension in the cable

The equation (9.38) becomes:
360a* (201° —200% ) —30-200* - @* = 200° = 0, and a=577.780327 which coincides

up to 2 decimal places with the more precise numerical solution, but much easier to

find. T =py=50-a- cosh@ =29322.788N (0.0007% error)

a

b) Suppose as given the length of the cable L, and the horizontal distance d
between the two points, the two ends A and B are at the same height. The formula
(9.31) relates the length of the cable to the parameter a:

L=2a sinhi , (9.39)
2a

but the solution is only based on numerical methods. However a simple
mathematical formula has be deduced [7] by expanding the hyperbolic cosine in its
Taylor series and keeping the first three terms:

3 5 7
sinhi:i+l(ij +l(ij +0 (ij (9.40)
2a  2a 3!\ 2a 51\ 2a 2a
Replacing this formula in (9.39) , a simple second degree equation in a? is
obtained:
3 5
(L—d)a4—d—a2— d__
24 1920

(9.41)

Example
For the same data as in the previous example, find the parameter a and the

maximum tension in the cable.

200° 2 200°
24 1920
which coincides up to three decimal places with the numerical solution

577.782780, being thus even more precise than the previous formula.

I =py=50-a- cosh@ =29322.894N (0.00005% error)

max
a

The equation (9.41) becomes a* — =0, from which a= 577.782472
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9.1.6. Strongly stretched heavy uniform flexible cable hanging freely

In general, flexible cables hanging freely are strongly stretched. In this case, the

H : : :
parameter a = — of the common catenary is very large, because the tension H is
p

very high. It follows that x/a is very small. The power-series expansion of sinh 2~
a

X .
and cosh—, can be used so that the previous formulas become:

X x 1 X 1 X cJ 1 x Y
s=a-silh==a-|=+—-S+—-F+..|=a D, | = (9.42)
a 3! ! ' La

a

1 x* 1 x C | x )"
T=py=pa-|l+— —+—-"+..|=pa- 1=
pPy=r { AT } P Z(2;1)! (aj

. x X 1 x3 1 x5 o 1 X 2n+1
tan@zsmh—:—+—-—3+—-—5+,__:Z N
a a 3 a 5 a = (2n+1)!

If the higher powers of x/a are neglected, it can be written:

x’ x
—5 T'=p-a; tané’:; (9.43)

1
—a+—"—; S=X+—
Y 2 a 6

N

If the same Cartesian coordinates shown in Fig. 9.5 is chosen and if are denoted the
span by d and the height of the two ends A and B by f, the formulas (9.43) become:

2 2 1 3 3 2
y=x—; a;d—; s=x+—2; L=d+ l2=d+8f;

2 8 6 a*’ 24 3d
. / ¢ . (9.44)

Fig. 9.5. The Cartesian frame chosen for positioning a strongly stretched cable
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Example
A uniform cable hangs freely under its own weight p=50 N/m. The span is d=200
m. The length of the cable is L=201 m. Determine the maximum tension (the ends
A and B of the cable have the same height: y, = y,).
2 2

201 =200+ -7 . =24

3-200 8f
The first equation is an algebraic one. Its solution is /=8,6602 m. It follows that
7=28867.69 N. There is a difference between this value and the exact value
29322.908 N (2,6% error), but the formulas are still accepted.
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10. KINEMATICS OF A POINT

10.1. Preliminaries

Kinematics is part of Mechanics and its objective is studying the motion of
particles and rigid bodies, but not the cause of these motions. In kinematics, in
addition to Statics concepts, is introduced also the concept of time. For the
purposes of theoretical kinematics, it is sufficient to assume that at each moment of
time there is assigned a certain real number ¢ It is chosen a unit of time, e.g. a
second, and an arbitrary staring moment of the motion, which will be called the
initial moment. The number ¢ is positive for moments after and negative for
moments before the initial moment.

In kinematics, it is assumed that a certain system of coordinates, called a reference
frame is given. The motion of a point or of a body is defined with respect to the
reference frame. Relative to one frame, a point or a body may be at rest, but
relative to another frame those objects may be in motion. A so-called “absolute
motion”, i.e. the motion of a point or a body independent of other bodies is a
meaningless concept. However, in practical problems, a frame attached to certain
bodies like the Earth, the Sun, the “fixed” stars etc. can be selected and
conventionally the motion with respect to such a frame can be considered as
“absolute motion”, depending on the required accuracy.

10.2. Motion of a point. Path of a moving point. Graph of a motion

A Cartesian reference frame Oxyz (Fig. 10.1) and a moving point M relative to this
reference frame are first considered. The motion of the point can be characterized

by means of the position vector 7 = OM as a continuous function of the time #:
r=7(t). (10.1)

The above vector function (10.1) describes the motion in its entirety, giving at each
moment ¢ a vector 7 and consequently the position of the point M.

The time can be taken in an interval t;< t <t;, which represents an interval of
definition for the position vector. The geometric locus of M as time is in the given
interval is called path or trajectory of the point.

It can be admitted that the path of the point is the arc I" (Fig. 10.1b). Along this arc
can be chosen certain sense and can be selected an arbitrary point My, which will
be called the origin of arcs. The position of the point M on the arc I' will be
determined by specifying a number s whose absolute value is equal to the length of
the arc M M , and which is positive or negative depending on whether the sense of

M M agrees or not, with the positive selected sense.
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Fig. 10.1 Reference frame (a), trajectory (b), motion graph (c), two simultaneous motions (d)

The parameter s is called the curvilinear coordinate of the point M on the arc (I).
The motion of the point M along the arc (I') will also be determined by the scalar
function:

s=s(t). (10.2)

By plotting the graph of the function s(z) is obtained the motion diagram or the
motion graph (Fig. 10.1¢). In Fig. 10.1d a example of graph of motions of two
particles on the same arc (I') is presented. The coordinates (t’, s’) of the point of
intersection of both graphs represent the time and place at which the two particles
met.

10.3. Velocity

By definition the velocity of a particle at the point M of position vector
OM =7 (t) is the derivative of vector function 7 () with respect to time ¢, if this

derivative exists:

V=—=7. (10.3)
The dot above is indicating in what follows, the derivative with respect to time.
It is easy to prove that the velocity vector v is tangent to the path of the particle at

the point M (Fig. 10.2).
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(D)
M

r(t V(t+AL)

v(t)
T(t+AL)

"y
X

Fig. 10.2 Two positions M and N along the trajectory of a point

Suppose that the moving particle is at the point M at a moment of time ¢ and at the
point. N at the time t+AL It follows thatOM =7 (t),

MN =ON —OM =7 (t+At)—7(t), W:F(t+At), so that the velocity vector

can be written:

. dr . AF .. MN
v=r =—=lim—=1lim——
d[ At—0 AZ At—0 AZ

— —_ (10.4)

N->M MN N->M N At—0 At

in which use was made of the known formulas:

lim ﬂ =7, which represents the tangent unit vector of the curve (I').
N->M ‘MN

MN
}firrl\}[ N 1, if the trajectory is a rectifiable curve, which is in general true.

limM = v, the scalar of the velocity.
At—0 At

10.4. Acceleration

By definition, the acceleration of a particle at a point M of position vector
OM = F(t) is the first derivative of the vector function v with respect to the time
t, or the second derivative of the vector function F(t) with respect to time ¢, if

these derivatives exist;

a=r=v. (10.5)

Suppose that the moving particle is at point M at time ¢ and at point N at time #+At.
Let v, and v, be the velocity of the moving particle at the point M and N. Let us
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apply these two vectors in the same point P (Fig. 10.3). It is easy to remark that:

v, =PM'=v(1); Vv,=PN =v(t+Al)
v, =V, =PN' —PM'=v(t+At)-v(t)=Av =MN';

N M
_dv . AV . MN'
a=—-=lim—=1lim .
dt At—0 At At—0 Al
Z A (r)
M _
_ N o P VN Na
r(t ;(t) V(t+At) B
~ VM M Av
r(t+At)
O -y

Fig. 10.3 Acceleration as variation of the velocity vector

The locus of end points (vertices) of vectors v considered applied in an arbitrarily
chosen point P is by definition the hodograph of the motion. Denote byv, , the

velocity of the end point M’ of vector v,, on the holograph atM'. It is easy to
prove that:

_q. (10.6)

Therefore the acceleration of a moving point is equal to the “velocity” of the
corresponding point on the hodograph of the motion.

10.5. Projections of velocity and acceleration on a Cartesian frame

The position vector 7 of the moving point may be written with respect to the
orthogonal axes of a Cartesian coordinates frame, in the form:

() =x()i +y()] +z(Ok , (10.7)

where x(2), y(t), z(t) are three scalar functions, which are continuous and have
derivatives and second order derivatives and i, j, k are the unit vectors of axes
Ox, Oy, Oz respectively. Since the axes are assumed fixed,

i=0, j=0; k=0 (10.8)
and the expression of the velocity v and of the acceleration @ become:
88



V(O =F (=30 + (0] + 20k (109)
at)=rt)y=x@)i +y(@)j +zZ(@)k
It follows that the projections of the velocity and of the acceleration of a moving
point on the axes of a Cartesian frame are:
v, =x(t); v, =y(t); v.=z(t)

. . . (10.10)
a,=x@t);, a,=y@); a =z(t)

10.6. Projections of velocity and acceleration on a cylindrical frame

The cylindrical coordinates of a point are rp, 6, z. The position of a point is defined
by three scalar functions: polar radius rp(?), polar angle 6(z) and “height” z() which
are continuous and derivable at least to the second order.

Fig. 10.4 Cylindrical coordinates frame

The axes OP, ON, Oz have the unit vectors p, 7, k . Since Oz is a fixed axis

k = 0. The unit vectors 5 and 7 may be written:

p=cosfi +sinfj;
L _ (10.11)
n=-sinéi +cosbj;
It follows that:
,.5:-sinﬁéi+cos«?9_7:¢9:(-sin617+c059_7) :éﬁ (10.12)
n=-cos@fi -sinB0j =-0(cosfi +sinbj)=-6p
The position vector 7(¢) has the expression:
F(t)=r,()p+z()k . (10.13)

Note that 7(?) does not represent in general the modulus of F(t), with the exception
of the case z(t) =0, which corresponds to a planar motion and the cylindrical
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coordinate system reduces to a polar coordinate system. The expressions of the
velocity v and of the acceleration a become:

V() =F(t)=Fp+r,p+zk =F,p+r,0n+zk
at)=v(t)=F.p+rip+na(i0+r0)+r0n+zk (10.14)

= (¥, -1,0")p + (1,0 + 27-0)7 + 7k
It follows that projection of the velocity and of the acceleration of the axes of a

cylindrical system of coordinates are, after dropping the index p in order to comply
with the notations of other authors:

v,=r apzif'—ré2
v =1 a, =r0+2:0 (10.15)
VZ:Z. az:é

in which r(2) is the polar radius function.

10.7. Projections of velocity and acceleration on a Serret-Frenet frame

A moving point describes a trajectory (I') as it moves. A point My is selected
(fixed) as origin on this trajectory (Fig. 10.5). The length of the arc M M 1is

denoted by s. The position vector can be expressed as the intrinsic equation of the
path:

F=r(s), (10.16)
and the scalar function
s:s(t), (10.17)

will define the position of the point M on the trajectory.

A C
z M, /
r
;(S) _ z t(s
O (s) y
X a) b)

Fig. 10.5 A moving point in the Serret — Frenet coordinate frame
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The coordinate frame of Serret-Frenet (called also natural or intrinsic) is a moving
frame. Its axes are: the tangent, the principal normal and the binormal to the
trajectory, with the origin in the moving point M. Denote by 7, v and S the unit
vectors of these axes (Fig. 10.5b). The following formula provides the orientation
of the tangent unit vector:
limﬂzizf. (10.18)
MM ‘ MM ds

Three infinite close points on (I') e.g. M, M’ and another point M” between them,
are in general non-collinear. It means that these points define a plane, (osculating
plane) and moreover a circle of center C (curvature center) and radius p (curvature
radius). The arc length can thus be written as

ds = pd0. (10.19)

As can be seen from (Fig. 10.5b), the two unit vectors 7 (s)and 7 (s + ds) make an

infinitesimal angle df and in the isosceles triangle they form, the following
formula holds:

1|d7
2las | 1oz
dO ~sind@ =211 _|2" s (10.20)
‘T‘ ds

The consequence is that the modulus of the derivative of 7 () with respect to s is:

d_f
ds

_1 (10.21)

P
As for the orientation, in the triangle mentioned above (Fig. 10.5b) the vector

d—Tis perpendicular on the bisector of the angle 6. Since this angle is infinitesimal,
s

the following formula can be deduced:

v _1 V. (10.22)
ds p
The third unit vector (of the binormal) is simply defined as =7 x ¥ . The velocity
in this frame is

Sodr_drds _ (10.23)
dt ds dt
The acceleration of the point has the expression:
— — -2
g=P cir s s E Sy (10.24)
dt t ds dt o)

91



It follows that the projections of the velocity and of the acceleration of a moving
point on the axes of this frame are:

_ a =§
v =§
T jz
v, =0 a,=— (10.25)
v, =0 P
p a. =0

10.8. Velocity and acceleration in a generalized orthogonal frame

A general system of generalized orthogonal coordinates (g, g2, ¢3) is considered in
the following. The position vector is then:

7:7(ql,q2,q3). (10.26)

During the motion, the three coordinates q,(?), g2(t), qs(t) are assumed continuous
and derivable. The expression of the velocity v is:

or. or . or

V=—-g+—0qg, +—g.. 10.27
24, q, 2. q, 2. 4, ( )
The unit vectors of axes are:
N S
__9q,  _ _0q, _ _ 0Oq,
G = : — . — ) 10.28
B L 1o
aq, aq, aq,
Denote by:
o i P S S L A+ L (10.29)
aq, aq, aq,

which are named the coefficients of Lamé. The expression (10.27) may be written:
v=Hgqe +H,q,e +H.q.e,. (10.30)

It follows that the projections of the velocity on the axes defined by the unit
vectors (e, e,, e,) are:

v, =Hq,
v, =H.q, (10.31)
v, =H.q,
The expression of acceleration is:
a= % (10.32)
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The projections of the acceleration on the axes defined above can be obtained
using a property of the scalar product:

=a-e; a,=a-e,; a,=dad-e,. (10.33)

a,

The expression of a; for example, may be written successively:

RN S 1 S ATSYIE: Al BTN
dt H oq, H, |dt\ 0g, dt\ 0g,

From (10.27) it can be deduced, considering ¢, q,, 4,.4, -4, .4,as independent

variables:
o _ v (10.35)
0q, 0,
The following relation is also necessary:
dafor :_él(ﬁszzfﬁi (10.36)
dt\ oq, ) og \ dt) 0q,

Hence

v v o(v? o(v’
oo Ld(yov) pav | 1 pdfoi)) o) gy
H | dt\ 0q, Ooq, | 2H,|dt\ 0q, 0q,
Analogous expressions can be obtained for a, and a;. The projections of the

velocity and of the acceleration on the axes defined above, can be cast in index
form:

v, =Hg,;
: : 10.38
PRSLIN 2 [ N PP (10:39)
2H, | dt\ 0q, ) Oq,

in  which, wusing the Cartesian projections of the position vector,
r=x(9,.9,.9,)1 +v(4,.9,-9,)J +2(4,.9,.9, )k , the coefficients of Lamé are:

2 2 2
B (5.2 Y (I I AR PP (10.39)
oq, q, aq,

Example. Spherical coordinates
Write the velocity and acceleration of a particle in spherical coordinates r,8,¢

which are independent functions of time (Fig. 10.6).

or

H ="
0q.

1

The relations between the Cartesian coordinates x, y, z and 7, 8, ¢ are:
x=rsinfdcosp;, y=rsin@sing;, z=rcosb. (10.40)
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Fig. 10.6 Motion in spherical coordinates

Using (10.39), the coefficients of Lamé are:

e (T -+ e G5 -
or or or 00 00 00

H, = X + & + 152 =rsind.
op op op

The components of the velocity from (10.31) can be deduced as:

(10.41)

v,=v,=Hr=r

v =v, =HO=r0 = V= +r0 +r¢*sin* 0 (10.42)
0 2 »

u

v

L =v, =H,p=rsinf¢
The derivatives required by (10.38) are:

v oV’ o’

Fr 27 Y =2/20, Py 2r’@sin® 0,
arz o (;”2 (10.43)
L 2(r6 +rg7sin’0); L =2r2¢"sinOcosh; =0,
or 00 op
The acceleration components from (10.38) can then be deduced in this case:
a Ear:l 4 av. _o =i —r6* —r¢’sin’ 6,
! 2| dt\ or or
a =a, 14 av. _ov =270+ rf — r* sinfcos b; (10.44)
“ 2r| dt\ 00 ) 00
¢ =a —— | [N OV hsing + risin+ 2rpl cos .
" 2rsin@| dt\ 0p ) Op

94



10.9. Angular velocity and acceleration. Areal velocity

A point moves on a trajectory (I'). Two close positions of the point on (I') are
marked by M and respectively N. The angle MON is denoted by A0, and the area of
the triangle MON is denoted by AA.

()
M

_ v(t) N _
v V(tHAD)

Z A

0.~
r(t+At)

>y
X

Fig. 10.7 Angular velocity and acceleration.

By definition the modulus of the angular velocity and angular acceleration are:

w=lim20_49. . _do (10.45)
A0 At dt dt
The areal velocity is by definition:
Q:Iim%. (10.46)
At—0 At
Admitting that OM < ON , it can be written the inequality:
%OM-OM-AHSAAS%ON-ON-A@. (10.47)

Dividing this inequality by At and passing to the limit for At —0, the inequality
becomes:

limL 22 <im 2 <fim L (r 4 ar) 22 (10.48)
At—0 2 At At—0 At At—0 2 At
But lim—7° AO _ liml(r + Ar)2 AO_ lr292 , so that
At—0 2 At At—0 2 Al‘ 2
0 =%ﬁ9’2 (10.49)

which represents another definition of the areal velocity. The areal velocity is used
in expressing Kepler laws in chapter 13.
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10.10. Particular motions of a point

In this paragraph are defined the most important particular motions and are
deduced simpler kinematic formulas for the velocity and acceleration of a point in
these cases.

10.10.1. Uniform rectilinear motion

By definition the trajectory of this motion is a straight line (Fig. 10.8) and the
scalar of the velocity is constant. Taking the Ox axis along this trajectory, it can be
written:

x=v, y=0; z=0. (10.50)
Integrating this differential equation, the projections of the position vector can be
determined:
x=vt+C,. (10.51)
If at the initial moment (1=0) x = x,, then the motion 1s along the Ox axis, with the
position, velocity and acceleration:

X=vt+x,; x=v; x=0. (10.52)

V=Vo

X0 T

v

Fig. 10.8 Rectilinear motion of a point. Initial conditions.

10.10.2. Uniformly accelerated rectilinear motion

By definition the trajectory of this line is a straight line (Fig. 10.8) and the scalar of
the acceleration is constant. If Ox is the trajectory then:

Xx=a, y=0; z=0. (10.53)

By successive integration the velocity and the position of the point are:

2

i=at+C; x=a%+Clt+C2 (10.54)

If at the initial moment (#=0) x =x,, v=v, then the motion is along the Ox axis,
with position, velocity and acceleration given by formulas:

1 . ..
x=—at’ +vt+x,; x=v=at+v,; X=a (10.55)
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10.10.3. Circular motion

A point M moves along a circle of radius R and of center O. A positive sense on
the circle is selected and an initial point M, is given.

Fig. 10.9 Circular motion of the point

The angular velocity is @w=6 and the angular acceleration is ¢ =@=6. The
velocity and the acceleration can be expressed using the Serret-Frenet frame:

v=§=RO=Rw

a =5=RO=Re (10.56)
. 2

a,= s = _(Ra)) =R’
Jo R

The orientations of the corresponding components, assumed to be positive, are
shown in Fig. 10.9.

Note: In most technical applications the angular velocity is indicated in rotations
per minute (RPM), which corresponds to a value in International System (SI) of
P (RPM) .

10.57
30 (10.57)

10.10.4. Motion along a cycloid

A circle of radius R is rolling along a straight line. The motion of an arbitrary point
on the circumference of the circle is followed (Fig. 10.10). It is assumed that at the
initial moment the point M is a point of tangency of the circle and the straight line
Ox at the origin of a coordinate system. If the circle turns through an angle 6, the
rolling distance OP = PM = RO and the expressions for the coordinates x and y of
M can be written as:

Xx=0P—-MQ=R6O—-Rsinf
y=PQO=CP-CQ=R—-Rcost
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The path of the point M is named a cycloid. Supposing that the circle revolves
uniformly i.e. that the angle 6 =@t (where w is a constant), the equations of the

motion of the point M are:

y :
N N Cycloid
Ny
7R
:, \ ‘I C
M0 1Q
JREIO AP »X
O P
Fig. 10.10. Motion along a cycloid
x=R(wt —sinor)
(10.59)

y=R(l-cosar)
The derivatives with respect to time provide the components of velocity:
x=Raw(1-coswr)
o , (10.60)
V= Rwsin wt
and the derivatives of the velocities represent the components of acceleration:
¥ = Rw’ sin wt
. ) . (10.61)
y=Rw” coswt

Hence

. ot
sin—|=PMw

“7‘ = \/R2w2(1 —Cos a)f)z + Rza)zsin2a)t =2Rw
(10.62)

a| = \/Rza)4(sin2a)l‘ + coszwl‘) = Rw? = CM o?

It can be proven that the velocity can be obtained as for an instantaneous rotation
around P, and the acceleration is obtained as for an instantaneous rotation around C
in the hypothesis & = ot . The moduli of the two vectors (10.62) have this property.

Remains to prove v L PM and a@ I CM .
The vectors PM =(x,, —x,)i +(v, —v,)] =—Rsinwti +(R—Rcosat)j and
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CM =(x,, —x.)i +(y, —v.)] =—Rsinawti +(~Rcosat);, can be used for the
scalar product to prove the perpendicularity:

v-PM = —Rw(1—cos wt)Rsin ot + Rosinwt - R(1—coswt)=0. (10.63)
and the parallelism can be proven by proportionality of the components:

Rw’sinwt  Rw’ cos wt

- . (10.64)
—Rsin wt —Rcos wt

It can also be proven that at the points of return (y=0), the velocity is null and the
acceleration is along the Oy direction. Indeed:

y=0 = R(l-coswrt)=0 = wt=2kr; k=12,.. (10.65)
The velocity has the components:

x=Rao(l-coswt)=0

(10.66)
¥ = Rwsinwt = Rosin (2kz) =0
The acceleration is defined by:
¥=Rw sin(2kz)=0 (10.67)

¥ =R’ cos(2kx) = R’

This result indicates that the path is perpendicular on the Ox axis in these points.

10.10.5. Motion along a helix

A

z R

b)

Fig. 10.11 Motion along a helix

A helix on a circular cylinder of radius R is considered. By definition the helix
crosses an arbitrary generatrix of the cylinder in equidistant points (Fig. 10.11a).
Let p be the distance between two such successive points, called lead or pitch.
Cutting the cylindrical surface along a generatrix and unfolding this surface will
generate a rectangle. The helix appears as parallel straight lines (Fig. 10.11b). The
coordinate z may be determined from the obvious proportion:
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E_ P L, Py (10.68)

RO B 27R 2
It follows that the parametric equations of the helix are:
x=Rcosd
y=Rsinf (10.69)
z= % 0

Assuming that the angle 0 is proportional to the time t, i.e. d=wtwith © a
constant, the equations of motion become:

x = Rcoswt
y=Rsin ot (10.70)
z= £an‘

27

The components of the velocity and acceleration are obtained as successive
derivatives of these expressions:

x =—Rwsin wt

2
y=Rocosawt ; [p|=x"+)y" +Z’ =a),/R2+4p2 (10.71)
7

=L g

27

<|

X =—Rw’ coswt
aiy=Ra’sinot ; a| =¥ +y° +Z =R’ (10.72)
z=0

Hence, in the assumed hypothesis, the moduli of the velocity and acceleration are
constant.

Note. Since |\7| 1s constant, the acceleration can only be perpendicular to the helix
2
and its expression is V—=|c7| according to (10.25). It can be thus obtained the

curvature radius of the helix:

2
p
V2 @’ (R2+47z2] ,
p=r= —Rr+-L (10.73)
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11. KINEMATICS OF A RIGID BODY

11.1. Preliminaries
A rigid body 1s moving with respect to a fixed Cartesian frame Ox,y,z. The

motion of the rigid body is completely defined if it is possible to determine the
motions of each point of the rigid body with respect to the chosen Cartesian frame.

Let M be an arbitrary point of the rigid body. In order to define the position of this
point with respect to the rigid body, it is necessary to consider a second Cartesian
frame Oxyz attached to the rigid body. Denote OM = r, Q—M :171 and TO =ro

(Fig. 11.1).

Z]

A\ 4

X1

Fig. 11.1 Motion of a rigid body

The following relation is obvious:
(=) +r@); vi. (11.1)

Since r = xi + yj + zk, the previous expression becomes:

ero—i-xf—f-y;—i-z% (11.2)

Note that Cartesian frame Oxyz is evidently, a movable one, but the coordinates x,
¥, z are constant, because the Cartesian frame Oxyz is attached to the rigid body.

11.2. The field of velocities. Euler’s formula

The derivative of expression (11.2) with respect to time represents the expression
of the velocity for a certain point of the rigid body in the form:

V=vo+xi +f + 2k , (11.3)

because v = 7 is the velocity of a certain point of the rigid body with respect to the
fixed Cartesian frame O;x;y;z; and v, = 170 is the velocity of the origin of the
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moving Cartesian frame Oxyz with respect to the frame O,x;y,z;.

11.2.1. Formulas of Poisson

In order, to express the projections of the unit vectors i, ],E on the axes Ox, Oy

and Oz of movable Cartesian frame Oxyz, the following nine scalar products are
determined:

-~
-~
-~
. ~.
~.
-~
=

J1Ji 1 JJ | Jk

k| ki |kj | kk

i

l . . . .

(11.5)

(11.6)

In which @,, ®,, ®. are three scalar functions. It follows that the above table is a
skew symmetric one and the expressions of ?,7,1? may be written:

z+:a)j—a)yl€; J=ok-oi; l?:a)}f—a)zj_’. (11.7)
It can be proven that these expressions may also be written in the form
i=oxi; j=oxj. k=oxk, (11.8)
in which @ is the vector defined by:
o=0i+oj+ok. (11.9)

The results (11.8) represent the formulas of Poisson for the derivatives of unit
vectors. The expression (11.3) of the velocity may be written:

V=V, +XOX1 +ydx ] +zxk =V, +@x(xi +yj +zk) (11.10)

102



or simpler:
V=V, +0Ox7 (11.11)

This is Euler’s Formula for the field of velocities in the most general motion of a
rigid body. Comparing formulas (11.3) and (11.10) it follows that ¥ = @x 7 .

11.3. The field of accelerations. Rivals Formula
Derivation of the formula (11.10) produces the acceleration

a=a,+WXF+@dXF . (11.12)
By definition v =a is the acceleration of a certain point of the rigid body with

respect to the fixed Cartesian frame O;x;y;z; and v, =@, is the acceleration of the

origin O of the movable Cartesian frame Oxyz with respect to the frame Ox,y1z;.

It has been proven before that 7 = @ x 7, and using the notation @ = & , the formula
(11.12) becomes:

a=a,+Exr+ax(@xF). (11.13)

This expression is known as Rivals formula for the field of accelerations in the
most general motion of a rigid body.

11.4. Particular motions of a rigid body

In this paragraph are deduced particular formulas for the velocity and acceleration
of an arbitrary point belonging to a moving rigid body.

11.4.1. Translation
By definition a rigid body is in motion of translation if a geometric vector AB
joining two arbitrary points A and B of the body maintains its direction and sense
during the motion of the body.

Fig. 11.2 Translation motion
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Note that the path of a point of a body in translation may be an arbitrary one. The
paths of all points are congruent and they can be superimposed by means of a
translation (Fig. 11.2). In particular the unit vectors i, j, k of the axes of the

moving Cartesian frame are constant. It follows that 7 =0, j =0, k = 0and
consequently @, =@, =@, =0 and

#=0 =>c=0=0. (11.14)
The Euler and Rivals formulas become:

v=",(1); a=a,(1). (11.15)

It follows that the fields of velocities and accelerations are fields of constant values
at any given moment of time. This means that at a moment ¢; all the points of the
rigid body have the same velocity and acceleration and this is true at any other
moment 7#,, but the effective value can change from one moment to another. The
velocities and accelerations are in this case examples of free vectors.

11.4.2. Rotation about a fixed axis
By definition a rotation about an axis takes place if there are two fixed points of
the rigid body during its motion. The two points define the axis of rotation and all
the points of the axis keep their positions during motion. Being a rigid body, every
point describes circles around the axis of rotation. It can be taken the Oz as rotation
axis and the fixed Cartesian frame with O;z; coincident with Oz. The angle
between axes Ox and O)x; is 6(¢) and defines the rotation of the rigid body around
the O,z; axis (Fig. 11.3).The unit vectors of the mobile frame are 7, 7,k and those

of the fixed frame 7, J,,k, .

7 =71

X 0 /x

Fig. 11.3 Rotation about a fixed axis
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The mobile unit vectors can be projected on the fixed axes:

>~

=—sin@i +cosbj, .
=k

=cosdi +sinbj,

1

The time derivatives of these vectors are:

The components of th

Consequently

i

(—sin )67 +(cos6) 07, =07

j =(~co0s0)di +(~sin0) 6}, =67

Fig. 11.4 Velocity field for a rotation about a fixed axis

0

@ vector are

7 =7

w =7 k=0
a)yzl? i=0.
w=i-]=06
@ = 0k = wk

Y1

Euler formula becomes in this case (v, =0) :

<

)

el

= o

= o
N
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(11.16)

(11.17)

(11.18)

(11.19)

(11.20)



from which the components of the velocity on the moving frame Oxyz are:

V. =—@y
ViV, =X . (11.21)
v.=0

It follows that the velocities are the same along a line parallel to the rotation axis,
since the components do not depend on the z coordinate (Fig. 11.4). Another
property is the linear dependence on the distance d to the rotation axis:

V| =o'y’ + @'y’ =0d. (11.22)

The Rivals formula, takes into account the obvious facts: @, = 0; @=wk; £=ck,
so that the acceleration field is given by:

k i J
Fz=€l€x7+a)l;x(a)/€x7):

k
g+l 0 0 w
0 (11.23)

= o
o~

y z| oy ox

=e(—yi +xj) -0 (xi +yj)=(—ey—'x)i +(ex—’y)]
The projections of the acceleration on the axes of the moving frame Oxyz are:
a =—gy—m'x
a,=ex—a’y . (11.24)
a =0

It follows that the acceleration has the same value at a given instant for all the
points along a line parallel with the rotation axis, since there is no variable z in
these formulas. The modulus of the acceleration increases linearly with increasing
distance to the rotation axis (Fig. 11.5).

Y1

X1

Fig. 11.5 Acceleration field for the rotation about an axis
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As can be seen from (11.23) the acceleration can be expressed by two components:
- a tangent component

a=ec(-yi +x) = |a|=|e|yx’ +y" =|¢|d, (11.25)
- a normal component
a,=- (xi +yj) |a|=o’\x’+)y’ =o'd, (11.26)

in which d is again the distance to the rotation axis.

11.4.3. Helical motion

By definition a rigid body is in helical motion if there exist two points of the rigid
body remaining on a given straight line. It is easy to prove that the motion consists
of a translation along the given line superimposed on a rotation around the same
line taken as axis. Being a rigid body, every point describes helixes around the axis
of rotation. It can be taken the Oz as rotation axis and the fixed Cartesian frame
with O;z; coincident with Oz. The angle between axes Ox and O;x; is 0(t) and
defines the rotation of the rigid body around the O;z; axis and the distance between
O; and O is denoted by zy (Fig. 11.6). The unit vectors of the mobile frame are
i,j,k and those of the fixed frame 7, j,,k and their relative angular orientation is

the same as for rotation.

X1
Fig. 11.6 Helical motion

Consequently the angular velocity and the axial velocity v, =v, are

_ not.

o=0k =wk; v,=zk =vk="v. (11.27)
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Euler formula becomes in this case:

N-I

=—wyT +ox] +v,k, (11.28)

NQ A

Jj
V=v,k+@x7=v,k+[0 0
Xy

from which the components of the velocity on the moving frame Oxyz are:

V. =—@y
VeV, =X . (11.29)
V.=V,

It follows that the velocities are the same along a line parallel to the rotation axis,
since the components do not depend on the z coordinate (Fig. 11.7). Another
property is the linear dependence of the tangent component with the distance d to
the rotation axis:

vt

=V v =Jox +0'y =ad. (11.30)

Fig. 11.7 Velocity field for the helical motion

The Rivals formula, takes into account the obvious facts:
a,=zzk =a,k; o=wk; € = @ = ¢k , so that the acceleration field is given by:
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J okl |7 ] k
a=ak +ck x7 + ok x(0k xF)=ak+0 0 &£+ 0 0 o
x y z| Foy owx 0

(11.31)

=&(—yi +x] )= (xi + )] ) +ak =(—ey—'x)T +(ex—&’y)j +ayk

The projections of the acceleration on the axes of the moving frame Oxyz are:

a =—gy—m'x
a,=ex—a’y . (11.32)
a. =a,

It follows that the acceleration has the same value, at a given instant, for all the
points along a line parallel with the rotation axis, since it contains no z as variable.
The modulus of the acceleration increases linearly with increasing distance to the
rotation axis (Fig. 11.8).

X1

Fig. 11.8 Acceleration field for the helical motion

As can be seen from (11.31) the acceleration can be expressed by three
components:
- a tangent component

a=c(—-yi+xj) = |a|=|e]x’ +y" =|¢|d, (11.33)
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- anormal component

a=-w (sz + y]_)

- an axial component

a

v

=w’\x'+y’ =a&’d, (11.34)

a=ak (11.35)

in which d is again the distance to the rotation axis.

11.4.4. Motion of a rigid body parallel to a fixed plane

A rigid body has a motion parallel to a fixed plane (plane motion) if there exist
three points belonging to the rigid body, which are not situated on the same straight
line and which remain in the same fixed plane during motion.

During the motion of a rigid body parallel to a fixed plane, all the points belonging
to the rigid body and situated into the plane determined by these three points
remain into the fixed plane. The section of the body by the fixed plane is itself a
two-dimensional rigid body which will be called the representative lamina
(Fig. 11.9). It will be proven that the motion of a rigid body parallel to a fixed
plane may be reduced to the motion of the representative lamina with respect to the
fixed plane. It is possible to choose the axes Ox; and Oy; of the fixed Cartesian
frame belonging to the fixed plane and the axes Ox and Oy of the movable
Cartesian frame into the representative lamina. Obviously O;z; and Oz are
perpendicular to the fixed plane (and implicitly to the representative lamina) and in
general O =0, (Fig. 11.9).

Z

X1

Fig. 11.9 Plane motion

Denote by 0 the angle between the axes O;x; and Ox and by Xo and y, the
coordinates of the origin O of the movable Cartesian frame with respect to the
fixed Cartesian frame. The scalar functions 6(t), xo(t) and yo(t) define the motion of
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a rigid body parallel to a fixed plane. It is easy to ascertain that the relative
positions of unit vectors 7, j,k of the movable Cartesian frame Oxyz with respect
to the unit vectors i, j,k, of the fixed Cartesian frame are the same as in the case
of the rotation. It follows that:

@=0k =wk; v,=x,0+7,]=v,0 +v,] (11.36)

a) Velocity field
Euler formula becomes

l

V=Y, +a_)XF:V0xZT+VOyj+ 0 :(VOx —a)y)lT+(V0y +wx)7 (11.37)

= O W
N

X

The projections of the velocity v on the axes of moving frame Oxyz are

V. =V, — Oy

v, =V, tOX . (11.38)
v.=0
7 A ,
R4 AZ
Instantaneous  axis| v,
of rotation
o T
; y
Pt =

X I

Fig. 11.10 Instantaneous center and axis of rotation

It follows that the velocities are constant along a straight line parallel to the axis
Oz, 1.e. perpendicular to the fixed plane and implicitly to the representative lamina.
If @w#0, there is a point I into the plane Oxy for which the velocity is zero. The
coordinates of this point are the solutions of the following system of equations:

{VOX —wy=0

_ 11.39
V,, t@x=0 ( )
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It follows
x, =——=; = (11.40)
A Cartesian frame Ix'y’z’ with axes parallel to the axes of the moving Cartesian

frame Oxyz is now considered (Fig. 11.10), the projections of the velocity v may
be expressed with respect to the new coordinates x', y', z' as follows:

— va LI '
V. =v, —o| —+y'|=-0y
w

va ] ]
v, =V, to| - a) +x' |=wx (11.41)

v, =0

Comparing (11.41) with (11.21), it can be concluded that the field of velocity in
the motion of a rigid body parallel to a fixed plane is identical with the field of
velocity in a rotation as if the rigid body would rotate about an axis perpendicular
to the fixed plane and passing through 1. This axis is called instantaneous axis of
rotation and 7 is called instantaneous center of rotation. Note that the rigid body
does not rotate about the instantaneous axis of rotation, because this axis moves
and so does the instantaneous centre of rotation.

The geometric locus of the instantaneous center of rotation I with respect to
the fixed Cartesian frame is called the fixed centrode. The locus of I with respect
to the movable Cartesian frame is called the movable centrode. Obviously the
fixed centrode and the movable centrode have at any time ¢t a common point, the
instantaneous centre of rotation I. It is easy to prove that the movable centrode
rolls on the fixed centrode.

7} |Movable axode |

|Movable centrode|
|Fixed centrode | \
O'

X1

|Fixed axode |

!

e

Fig. 11.11 Rolling of the movable centrode over the fixed centrode
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Indeed, denoting by x; and y; the coordinates of I with respect to the fixed frame
Oix1y1z; and by x and y the coordinates of I with respect to the movable frame
Oxyz, the following relation holds (Fig. 11.11):

X4y ) =7 +xi +y (11.42)
The derivative of this relation with respect to time is:
XT+7 ] =F +%i +Xi +7j+y] (11.43)

But 7, +x7 +yj =v, +@x7 =0, because I is the instantaneous centre of rotation
and its velocity is equal to zero. It follows that

XL+, =xXi+y] (11.44)
The left side of this relation is the velocity of I with respect to the fixed centrode
and the right side of this relation is the velocity of I with respect to the movable
centrode.
The equality of these velocities proves that the two curves have in the common
point I a tangency point. The equality proves also that the elementary arcs of these
two curves are equal (because in generalds =vdt). It follows that the movable
centrode rolls on the fixed centrode. The locus of the instantaneous axis of rotation

with respect to the fixed and the movable frame are respectively called the fixed
axode, and the movable axode. These axodes are cylindrical surfaces.

Example (Problem of Cardan)

A rod AB of length / moves in

Fixed centrode . :
| | such a way that its ends remain at

V1 every instant on the fixed axes Ox;
/T B 1 and Oy, respectively. The velocity
M G , of A is given u > 0 (Fig. 11.12).
) 03 X Determine the instantaneous centre
0 of rotation, the angular velocity,
p ,' the velocity of B as function of the
/! 7\ Xi angle O;BA =0, then the fixed
0, a : U centrode and the movable

O=A centrode.

|Movable centrode|

Fig. 11.12 A rod in contact with two fixed orthogonal surfaces

Since the field of velocity is the same as in rotation, the instantaneous centre 1 is at
the point of intersection of the straight lines perpendicular to the velocities of A

and B. The velocity of A may be writtenu = I[4A® . It follows that @ = LAV
14 Icos@
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u

The velocity of B may be written v=[/B® =1[sinf =utand

cosd
To determine the fixed centrode, it can be remarked that O;1 = AB =/ (O,AIB is a
rectangle) and because O is a fixed point, the locus of I is a circle with center in
O; and radius /. The movable centrode: the angle AIB is equal to 90° at every
position of the segment AB. The moving centrode will be the circle of the diameter
AB=1

It is possible to give also an analytical solution to this problem. Let be O;x;y; and
Axy the fixed and respectively the movable Cartesian frames. The coordinates of 1
with respect to the fixed and respectively mobile Cartesian frame are denoted by (;
and 1; and respectively { and n:

& =Isinb, n, =lcosd

E=1Icosfsin®; n=Icos’0

2
Eliminating the angle 0, it follows & +n’ =1%;, &+ (77 —éj =1[* , verifying the

same results.

b) Acceleration field
The Rivals formula, based on the facts:
a,=a,i +a,j, o=ok; &=ck, (11.45)
becomes
i J ok i 7 ok
a=a,+sxF+ox(oxF)=a,i+a,j+/0 0 ¢+ 0 0 o
(11.46)
x y z| oy awox 0

=(a,, —ey—w'x)i + (aoy +éex— a)zy)]
The projections of the acceleration a on the axes of moving frame Oxyz are:
a =a, —Ey—-w'x
a,=a, +Ex—0'y. (11.47)
a.=0

It follows that the accelerations are constant along a straight line parallel to the axis
Oz, which is perpendicular to the fixed plane and implicitly to the representative
lamina. If @* +&* # 0 there is a point T into the representative lamina, for which
the acceleration is zero. The coordinates of this point are the solutions of the
following system of equations:

2 —_—
a, —wx—ey=0

: 11.48
a, +ex—w'y=0 ( )
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It follows

w'a, — ’
x, = &G e2a0y = @ a(i} + ezaOX . (11.49)
@ +¢ o +¢
The point T is called the pole of accelerations.
As in the case of velocities, if a Cartesian frame Tx"y"z" whose axes are parallel to
the axes of the movable frame Oxyz, the projections of the acceleration may be
expressed with respect to the new coordinates x", y", z" as follows:

2 2
@'a, +&a @’'a, +&a,
a.=a, _g[M+y"j_a)2 £M+x"j :_gy"_ C()ZX"

o' +& o' +&
2 2
w'a, +éa, w'a, +¢a,
a,=a, +&| ———"+x"|-0'| ———"+y"|=ex"-@’y" (11.50)
: o' +¢ o' +¢

a.=0

Comparing (11.50) to (11.32) it can be concluded that the field of acceleration in
the motion of a rigid body parallel to a fixed plane is identical with the field of
acceleration in a rotation, as if the rigid body would rotate about an axis
perpendicular to the fixed plane and passing through 7. Note that the rigid body
does not rotate about this axis, because this axis is mobile just as the pole of
acceleration T.

Example.
A disc of radius R, whose center O moves with a uniform velocity # rolls without

sliding along the straight line (A = Ox). Determine the instantaneous centre of
rotation 7, the fixed centrode, and the moving centrode, the pole of accelerations 7,
the velocity and the acceleration of a point M on the circle (Fig. 11.13).

|Movable centrode|

A

Yo _
B 2u :
VM | >
M
M _
T u X0

v

Oo \ LL_ >
/ e
|Fixed centrode | a)

Fig. 11.13 The motion of “pure” rolling of a disc on a plane surface (a) and pole of accelerations (b)

Since the circle rolls on the straight line (A), the point of contact between the circle
and the straight line is the instantaneous centre 1. It follows that the fixed centrode
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is the straight line (A) and the movable centrode is the outer circle of the disc.
Since the centre O of circle has a uniform rectilinear motion its acceleration is
equal to zero. It follows that @, = 0, therefore O is the pole of acceleration (7=0).

Since I is the instantaneous centre of rotation and the velocity of O is u, then
W= s It is very interesting thatv, = - IB = 3 2R =2u, so that is if a car moves

with a velocity of 50 km/h, then at each instant there are points on the wheels of
the train having instantaneous velocities of 100 km/h! For an arbitrary point M on
the circle, the velocity v, = w-IM 1s perpendicular on IM and the acceleration

a, =TM - @’ = R- " has the direction OM and the sense MO, because &£=0.

. u . a .
Note. If a, #0 it follows:w = » = e=0= ?0 . The instantaneous centre of

rotation (/) is also the point of contact between the circle and the straight line. The
pole of accelerations T however is located as shown in Fig. 11.13b. The segment

OT = " 4aj_’ el The angle ¢ = IOT is given by the relation tan ¢ = iz

11.4.5. Motion of a rigid body with a fixed point
If a rigid body has a fixed point it is convenient to choose the origins of the fixed
and the movable Cartesian frames in this point. It follows that v, =0and @ is an
arbitrary vector:

o=wi+0j+ak. (11.51)

The Euler formula becomes:

i J k
V=0OXT =0, O o, :(a)yz—a)zy)f+(a)zx—a)xz)}+(a)xy—a)yx)l; (11.52)
X y z

The projections of the velocity v on the axes of movable Cartesian frame are:
V=07 0X
V,=0X—07Z. (11.53)
V. =0y - 0x
Obviously, the origin has zero velocity. If other points have zero velocity, the
coordinates of these points are solutions of the following system of equations:
0z-wy=0
wx—wz=0 (11.54)

oy-ox=0
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It follows that:

x (11.55)
(0]

X

This is a straight line passing trough the origin and having the direction of . This

is an instantaneous axis of rotation. The field of velocity is identical with that of
a rotation as if the rigid body would rotate about this axis. Note that the rigid body
does not rotate about this axis because it is a moving one. The locus of the
instantaneous axis of rotation with respect to the movable frame is a cone named
polhode cone.

The locus of the instantaneous axis of rotation with respect to the fixed frame is
another cone, named herpolhode cone. Obviously these two cones have a common
straight line which is the instantaneous axis of rotation. It is easy to prove that
these cones are tangent and the polhode cone rolls on the herpolhode cone.

Indeed if &, n1, {; are the coordinates of a certain point P on the instantaneous axis
of rotation with respect to the fixed frame O;x,y;z; and &, 1, { the coordinates of
the same point P with respect to the movable frame Oxyz, the following relation is
obvious:

Eivwnj +Chki=&i+nj+¢k (11.56)

The derivative of this relation with respect to the time t, is:
Eivtn - +C k=Eitn j+Ck+ETHn J+Ek (11.57)

But f-?+77-7+ 4 kK =wxr=0 because the considered point P lies on the
instantaneous axis of rotation. It follows that:

Eivtn - +C ki=Ei+n-j+Ck (11.58)
The left side this relation is the velocity of P with respect to the fixed frame and the
right side is the velocity of the same point with respect to the movable frame.

These two velocities are perpendicular to the instantaneous axis OP because
E+nl +¢ =& +n* + ¢ = const. and consequently by derivation

EE +mn +¢, & =EE+m+ L =0. (11.59)

This last formula corresponds to the scalar products between (11.56) and (11.58)
which proves the above assertion.

It follows that the two cones have in P the same tangent plane and the movable
cone rolls on the fixed cone about the instantaneous axis OP, because the tangent
plane at a point P of a cone is determined by the generatrix passing through P and a
straight line perpendicular to the generatrix and tangent to the cone. The straight
line is in this case the common tangent to the curves described by P on the two
cones. The elementary arcs of these two curves are equal, because the two
velocities are equal.
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The Rivals formula becomes:

i J k

a=sxr+ox(@xr)=exr+(@-ro-o'r=|¢. g, €.
(11.60)

X y z

Hox+o,y+o)oit+o,j+ok)—(0 +o +o)(xi+yj+zk)
The projections of the acceleration a on the axes of the movable frame are:
a, = —(a)f, + o)X+ (w0, —¢)y+(00 +¢&)z
a,=—(@) + o))y + (00 —¢&)z+ (00 +8)x (11.61)
a, =—(@; + o))z + (0,0, —£)x+(0.0,+&)y

Obviously, the origin has the acceleration equal to zero. The question is if there are
other points with zero acceleration. The coordinates of these points are the
solutions of the next system of equations:

~(o} + 0 )x+ (0,0, &)y + (0,0, +£)z=0
—~(0! +0))y+ (0,0, —&)z+ (0,0, +£)x=0 (11.62)
—~(0] + @)z + (0,0, - ))x+ (0.0, +5)y=0

This is a homogeneous linear system. Its determinant can be proven to be:

— 2
i

— —2
A:—[a)xa"] =—| |,
&,
X

e =

t

(11.63)

R wy

N%

— — —2
:—[(a),g —a)vg,)i +(we —we)j +(a)g,—a),5 )k]
y©z 2%y z%x xz x“y yTx

If w and ¢ are not equal to zero, A#0 and there are no points with zero
acceleration, except the origin.

It follows that the field of acceleration of a rigid body with a fixed point is not
reducible to the corresponding field in rotation. It is a specific field of acceleration.

Example. Kinematic formulas using Euler angles

A rigid body moves around a fixed point, such that the components of the angular
velocity can be expressed using the Euler angles (¥,0,¢) as shown on Fig. 11.14,
by

@ =V versO,z, + ¢pversOz + OversON (11.64)

The nutation angle 6 measures the inclination of the instantaneous axis of rotation
relative to the fixed O,z; axis. The precession angle ¥ is measured in the fixed
plane O;x;y; and is positioning the intersection line of the Oxy plane with the
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mentioned fixed plane. The ¢ angle is the angle of rotation of the rigid body
around the Oz instantaneous axis of rotation. Considering the following relations
between the projections of the angular velocity ad the Euler angles, determine the
polhode and herpolhode cones assuming the following kinematic conditions

Y = w, = const; 0 =06, =const. and ¢ = = const.. Projecting (11.64) on the
axes of the moving frame attached to the rigid body, the angular velocity
components are:

@, =y sin@sinp + Ocos @

o, =y sin@cos—Osing (11.65)

@, =y cosl+¢

Herpolhode
cone

Fig. 11.14 Motion of a rigid body with a fixed point defined by the Euler angles.

The angular velocity components are in this particular case:
@, = w,sin g, sin @
o, = @, sin g, cos (11.66)
@, = w, cos 6, +Q

It can be remarked that @’ + a)j = @, sin’ 6, = const.; o, =w,cosf, +Q = const.

which means that the angular velocity is a constant and has constant components
on the Oz axis and on the moving plane Oxy. Consequently, the polhode cone has
Oz as axis. On the other hand, the projections on the fixed frame of the angular
velocities expressed using the Euler angles are:

@, =0cos¥ + @sinPsin ¥ = Qsin G, sin ¥
®,, =0sin¥ - gsin fcos ¥ = —Qsin 6, cos ¥ (11.67)
@, =y +@cost=aw,+Qcosb,
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It follows that the herpolhode cone has the axis on the fixed O;z; axis and a
constant projection Qsing, on the fixed O,;x;y; plane (Fig. 11.14). This particular

motion is called regular precession and will be studied in Dynamics for the rigid
body with a fixed point.

11.5. General motion of a rigid body
The Euler formula with arbitrary v, and @ can be written:

N-I

J ok
‘7:‘70 +CT)XF: VO,xlT+v0y7+vOzl€+ a)x a)v a)z :(Vox +a)yz_a)zy)i_
S (11.68)

+<v0y to.x-— a)XZ)]_' + (VOZ RECH a))’x)];

7
instantaneous
axis of the
helical motion
O, .

X1

Fig. 11.15 General motion of a rigid body

The projections of the velocity v of a point of the rigid body on the axes of the
movable frame are

V.=V, t0z-0y
V, =V, t0OX— 0z (11.69)
V.=V, +t0y-ox

Property 1: The field of velocity at any time ¢ is identical to the field of velocities
of a helical motion. Indeed, for the helical motion v, || @, so in this case points for

which v || @ are those placed on the straight line v =A@ :

V,toz-wy v,+tox-wz v,+a0y-—ox
2 - =2 =2 “ —. (11.70)
[0 @ @

X y z
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This straight line is called the instantaneous axis of the helical motion (Fig.
11.15). The general motion of a rigid body may be represented by a succession of
infinitesimal helical motions. However the instantaneous axis of the helical motion
is mobile. Its locus with respect to the fixed frame is a rectifiable surface called
fixed axode and its locus with respect to the moving frame is another rectifiable
surface called movable axode.

Property 2: The two axodes have a common generatrix which is the instantaneous
axis of the helical motion.

Property 3: During the motion of the rigid body the movable axode rolls on the
fixed axode about the common generatrix and also slides along this generatrix.

Considering & ,7,,¢, the coordinates of a point P belonging to the instantaneous
axis of the helical motion with respect to the fixed frame, and &,7, the

coordinates of the same point but with respect to the moving frame, the following
relation holds:

ET+nj +Ck =7 +& +nj+Ck; Vt. (11.71)

The derivative of this relation with respect to time becomes:
Eivtn o+l h=v, +E it 4 k+E T T+C k. (11.72)
But 170+§-1++77-7+§-l?:\70+a_)x17:/1a_) because the point P is on the

instantaneous axis of the helical motion and its velocity is parallel to the angular
velocity. It follows:

Eivtnj +C k=E¢ivn- j+C k+ @, (11.73)

Since the difference between the velocity of the point P with respect to the fixed
frame and the velocity of P with respect to the moving frame has the direction of
@, it follows that the movable axode is sliding along the common generatrix and
rolls about this generatrix.

The acceleration of an arbitrary point is given by the Rivals formula:

a=a,+exr+ax(dx7), (11.74)

with arbitrary a,, @, € .

Property 4: The field of accelerations in a general motion of a rigid body is
identical to the field of accelerations in a motion of a rigid body with a fixed point.

If ® and £ are not equal to zero, there is a point and only a point of position
vector 7 for which the acceleration @=a,+&x7+@x(@x7)=0. This

condition can be expressed as:
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EXT+ox(@x7F)=-a,. (11.75)
Scalar multiplying by @, leads to:

o(ex7)+o|ox(ox7)|=-a-a, (11.76)
The second term in the left side is null being a mixed product with two identical
vectors. It follows:

(ox&)F=-w-a,. (11.77)

In general the angular velocity and acceleration are not collinear (@x & # 0), so
that a unique non-trivial solution for 7 exists.

The coordinates of this point are the solutions of the following system of algebraic
equations, obtained from (11.75):

~(@ + @)x+ (0,0, &)y +(0,0, +£,)z=-a,
—~( + @)y + (00 —&)z+ (00 +&)x=—a, (11.78)

2 2 _
—(, + @, )z + (.0, — g, )x + (a)za)y +&)y=-a,
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12. KINEMATICS OF THE RELATIVE MOTION

12.1. The relative motion of a point. Preliminaries

The velocity and acceleration of a point depend on the reference frame, relative to
which the motion of the point is examined. The motion of one and the same point
will therefore be described differently by two observers moving relative to each
other. The motions of the planets and Sun relative to a reference frame attached to
the Earth are very complicated. Copernicus discovered that the motions of the
planets are represented in a much simpler manner, if the reference frame is
attached to the Sun.

The problem is thus to determine the motion of a point M relative to one fixed”
frame as this motion is determined relative to another moving frame. The motion
of M with respect to the moving frame is by definition the relative motion of M.
The motion of M with respect to the “fixed” frame is by definition the absolute
motion. The motion of transport at a given moment is the motion of a point
belonging to the moving frame and coinciding at the given moment with the point
M. It is possible to define the relative path, the relative velocity, the relative
acceleration, the absolute path, the absolute velocity, the absolute acceleration,
but only the velocity and the acceleration of transport.

Suppose for example, that a passenger is running along the aisle of train. As the
fixed frame, can be taken the frame attached to the Earth and as moving frame, the
frame attached to the train. A person standing near the track will observe the
motion of the passenger relative to the fixed frame (the absolute motion) and a
person sitting in the train car will observe the motion in the moving frame (the
relative motion). The velocity of transport and the acceleration of transport will be
the velocity and the acceleration of that point of the floor belonging to the aisle on
which the running person is at a given moment.

In the following, it shall be determined the absolute velocity and the absolute
acceleration, if the relative motion of the point M with respect to the moving frame
and the motion of the moving frame with respect to the fixed frame are known.

12.2. The derivative of a vector defined by projections on the axes of
a moving frame

Let U be a vector whose projections on a moving frame are known:
U=Ui+U, j+U.Uk. The derivative of this relation with respect to time can be
written successively:

dU

E=Uj+Uy]_'+Uzl€+sz++Uj+Uzl?. (12.1)
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By virtue of the Poisson formula:
Ui+Uj+Uk=Ua@xi+Uaxj+Uoxk
=ox(Ui+U j+Uk)=axU

The local derivative of U with respect to time is by definition:

U _Ur+U7+UFK.
Ot : Y
The expression (12.1) becomes
d—U = 8_U +aoxU.
dt ot

12.3. Absolute velocity of a point

(12.2)

(12.3)

(12.4)

A fixed Cartesian frame O,x,y,z, , a moving Cartesian frame Oxyz and a moving

point M are considered (Fig. 12.1).

Z]

01 yi

X1

Fig. 12.1 Relative and absolute position vectors

The following notations are used:

7 =OM the position vector of M with respect to the moving frame
7, =O0M the position vector of M with respect to the fixed frame and

7 = 0,0 the position vector of the origin O of the moving frame with respect to the

fixed frame. Obviously:
=T AT

The derivative of this relation with respect to the time becomes:
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?1:?0+2—:+a_)x;7, (12.6)

because 7 is defined by its projections on the axes of the moving frame and its
time derivative is obtained by applying (12.4).

Since 7, is the absolute velocity of M, 7, =¥, is the velocity of O and g—: =V, is
the relative velocity of M, the relation (12.6) may be written:
V=V 4V, +OXT. (12.7)

The velocity of transport is the velocity of that point of the moving frame having
the position vector 7 :

Q

=V, + DX . (12.8)

~

The relation (12.7) becomes
v (12.9)

<

Il
\<|

+

Therefore the absolute velocity is equal to the sum of the relative velocity and the
velocity of transport.

12.4. Absolute acceleration of a point

The time derivative of relation (12.6) is:

=N:
I

?'0+a:_+5)xa—7+cf)x7+5)x(a—7+@x7j, (12.10)
ot ot ot

because 7 and 2—’; are defined by their projections on the axes of the moving
frame and their derivatives are obtained by applying formula (12.4). Since 7; is the

. . . or __ . .
absolute acceleration of M, 7, is the acceleration of 035:% is the relative

2—

velocity and gt’; =a, 1s the relative acceleration, then the relation (12.10) may be

written:
a,=a +a,+&Xr +ox(@+7r)+20xV, (12.11)

The acceleration of transport is the acceleration of that point of the moving frame
having the position vector 7 and is obtainable from Rivals formula:

a=a,+EXr+ox(@xr). (12.12)
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The Coriolis acceleration is by definition twice the vector product of the angular
velocity of the transport velocity and the relative velocity of the point:

a =2oxv.. (12.13)
The relation (12.10) becomes:

a=a +a +a.. (12.14)

Hence the absolute acceleration is equal to the sum of the relative acceleration, the
acceleration of transport and the Coriolis acceleration.

Example 1. A point M moves along a bar
situated on the Ox axis of a moving
Cartesian frame Oxyz (Fig. 12.2). The
moving Cartesian frame Oxyz rotates
about the axis Oz =0Ozwith angular

Y1

M velocity @. Determine the absolute
Q) velocity and the absolute acceleration of M

e
X1
0=0:% x(0) > for x=%7/l2, if @,y are positive

constants.

Fig. 12.2 A point moving on a rotating bar

From the given data, it follows that7 =0 ;7 =xi =1/2yt’i; @=wk, £€=0,
v, =7,=0; a,=v,=0.

In order to obtain the absolute velocity of M, the relative velocity and velocity of
transport are first determined:

__or — _
V’,ZEZQ/H; y ylu \/79/\ X
V=V, +@xF =0k x1/2ytT =1/2ywt’] _
It follows that the absolute velocity of M is: Vi Ve
V.=V 4V, =yti +1/2y0t” M
For the absolute acceleration of M, its =X1
. ) . 0=0,
relative  acceleration, acceleration of
transport and Coriolis acceleration are _
separately determined: y vt Ay, X
T _ 7 O
"o a a
M
at X1
O:O1 g
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a, =a,+&Xr+ox(@x7r)=
=a)l?><za)t2] e
2 2

a =20xv. =2k xyti =20yt .
It follows that the absolute acceleration of M is:

=a +a+a :(7/—ga)2t2)7+27a)t7

L

Example 2. Determine by a graphical method the relative velocity, the velocity of
transport of A and the relative acceleration, acceleration of transport for the present
position of a mechanism shown on Fig. 12.3. The constant angular velocity of OA4
i1s @ and OA4=r.

The absolute velocity of A is \VA\ =or =w0A4. It is perpendicular to OA. The
direction of the relative velocity of A is 0,4 and the direction of the transport
velocity of A is perpendicular toO,4. At a chosen scale, with the origin in an
arbitrary point P, can be drawn the vector v in the sense given by w (see figure b).
From geometrical properties of triangles, it follows that:

b)

Fig. 12.3 A slider mechanism (a), the velocities diagram (b), the accelerations diagram(c)

\Vr\ =v_sin(a + f) =rosin(a + p);

v |=v,cos(a + f). The angular velocity of the

S v
transport motion 18 @, = ——.
0,4

1

The absolute acceleration of A is\ﬁA\ =O0Aw’ =rw’. Its direction and sense are

given by 40 . The normal acceleration of transport and the Coriolis acceleration of

A are respectively:
2
t

a, = Ve O Aw’ (Its direction and sense are given by A0, ) and:
1
la|=2wy, =2 Yoy =2 ro sin(a + w)cos(a + @) (Perpendicular to 0, 4)
c tr OIA r 0 A rp 1

1

From an arbitrary point Q are plotted @, and one after another: @, a_.

m?> ¢
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The direction of @, is 0,4 and the direction of the tangent acceleration of transport
a, is perpendicular toO,4. These last two vectors must close the polygon of
vectors. Their values result from the very polygon of vectors (fig c)

—|a |cos(a+ p); |a,|=|a.|-|a,|sin(a + B).

=|a

n

a,

att

12.5. Relative motion of a rigid body. Relations for velocities

A rigid body is moving with respect to a movable frame O,x,y,z,. A fixed Cartesian
frame Oxyz and a Cartesian frame O,x,y,z, attached to the rigid body are also
considered. Denoted are O,M =7 and O,M =r7,the position vectors of a certain

point M of the rigid body with respect to the origins of two Cartesian frames (Fig.
12.4).

Fig. 12.4 Relative motion of a rigid body

The relative angular velocities and accelerations are @,,,®,,,&,,,&,,.- The relative

velocities and accelerations are v,,,v,,,a,,,a, . These vectors define the motions of

the origins O, and O, and also defining the motions of O,x,y,z, with respect to
Oxyz and O,x,y,z, withrespect to O x,y,z, respectively.
In order to determinate the velocity of arbitrary point M with respect to the fixed

Cartesian frame Oxyz, it will be considered the velocity of M with respect to
O,x,y,z, as a ’relative velocity” and the velocity of the point belonging to the

O,x,,z, frame and coinciding with M as a “velocity of transport”. It follows that:
V.=V, +®, XF,
oo e (12.15)
vt = v]() + 10 X ’/i
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(12.16)

Consequently:
VM :‘710 +‘72I +a_)10 Xf—l—a_)Zl XFZ]

It is easy to generalize this formula for » movable Cartesian frames

Ox,y,z, ...0 x,y z . The absolute velocity is in general:
> (12.17)

VM = vi,ifl + a)i,ifl X I/;

n

i=1 i=1

Another point N belonging to the rigid body is now considered. If 7, (j=1...n) are

the position vectors of N with respect to the origins of the movable Cartesian
frames Ox,y,z,...0,x,y z, the expression of v, is
Vy =2Vt 0, XT, (12.18)

i=1

By subtracting the relation (12.18) from (12.17) it is obtained:

W, -V, = Y@, x(F-F)=Ya, < MN (12.19)
i=1 i=1
because 7, -7, = MN . The last relation may be written:
v, =7, + (X, ) x MN (12.20)
i=1
Since the velocity field of a rigid body # is defined by the relation
DOXT (12.21)

V=y,+

it follows if the origin O is taken in M, that v =¥, , 7 = MN ,@ = @, and
(12.22)

v, =V, +o xXMN

By comparing (12.22) and (12.20) it follows that:
(12.23)

n
a)nO = a)i,i—l

=1

12.6. The Kinematic-Static analogy

The formulas (12.17) and (12.23) may be written in the form:

n n _______ n
@, = @ s Vy = ZMOi X, + Zvi,i—l >
i=1 i=1

(12.24)

i=1
because 7 =O.M =-MO; and @, x7 =0, , xOM =MO . x@,, ,.

These formulas are analogous to the formulas of Statics:
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R=F; M,=YMO xF+31,, (12.25)
1

i=1 i=1

for the resultant force vector R and for the resultant moment vector M, of a
system of forces F and couples M, acting upon a rigid body. It follows from

these the character of sliding vectors for @, and the character of free vectors for v .
It follows also an analogy:

o<« F; ve—M (12.26)

This analogy is called the kinematical-static analogy.

12.7. Velocity field of the absolute motion

The kinematic-static analogy permits to find the velocity field of the resultant
motion of » relative motions of moving frames Ox,y,z,..0,x, v,z . Let @ jand v,

by the absolute angular velocity and the velocity of a certain point M of a rigid
body. The following possible cases exist:

) @,=0, v,=0 then the rigid body is at rest
2) @,#20, v,=0 then the velocity field is as in rotation
3) w,=0, v,#0 then the velocity field is as in translation
4 @,#20 v,#0 and
a) @,-v, =0 then the velocity field is as in rotation
b) @, v, #0  then the velocity field is as in helical motion

12.8. Superposition of particular motions of rigid bodies. Velocity
problem

12.8.1. Superposition of translations
In this case @, =0; v, _, #0(i=1...n).It follows that:

(12.27)

Two cases are possible:
a)if v,, # 0 the velocity field of the resultant motion is a translation,

b) if v, = Othe rigid body is at rest.
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12.8.2. Superposition of concurrent rotations
In this case: @,,#0 and v, =0 and it is assumed that O, =0 (i=I....n).
It follows that

n
n0 a)i,ifl
i=1

(12.28)

VM=ZMOX0)I-,I--1+ V= O x @, = Oxm
i=1 [

Two cases are possible:
a) if @, # 0 the velocity filed of the resultant motion is a rotation

b) if @, =0 the rigid body is at rest.

el
|

Fig. 12.5 Two conical gears

Example
Two conical gears having concurrent fixed axes and the angles between axes and

generatrices o and P respectively have at each time a common generatrix (Fig.
12.5). If @,, is the angular velocity of the first gear, determine the absolute angular

velocity ,, of the second gear and the relative angular velocity ,,. From
o,, = w,,+@, 1t follows that these three vectors form a triangle (see figure).
Applying the law of sinus in this triangle, it is obtained:

o, 10) . sin(x + sin
—0 =2 =—2— and finally : @,, = —(. P w, 0,,=——0,
sinff  sin(f+a) sina sin sin

12.8.3. Superposition of parallel rotations

In this case: @, , =@, u and v, =0 (i=1,...,n). It follows that
_no = a_)i,i—l :( a)i,i—l)l/_t
(12.29)
VM = Oi x a_), it ‘71',1'—1 = (ZMO’ @i ) Xu
i=1 i=1 i=1



Three cases are possible:

a) if @, =0 and ¥, =0 the rigid body is at rest;

b) if @, =0 and ¥, #0the velocity field of the resultant motion is a

translation

¢) if @, # 0 the velocity field of the resultant motion is a rotation.
By analogy with the case of parallel forces in this later case the instantaneous axis
of rotation passes through the center of parallel vectors @,,  whose position vector
is:

MO, @
2LMO o, (12.30)

ﬁ 4 L=

Example
Two cylindrical gears have parallel fixed axes and the radii r; and r,. They have at

each time a common generatrix (Fig. 12.6). If @,, is the angular velocity of the first
gear, determine the absolute angular velocity @, of the second gear and the
relative angular velocity @,,.

E L .

| w - :
| O, T4>m ” U‘lm 0, m, || _

Fig. 12.6 Two parallel gears

From the equations (12.29):
@,, = 0, + 0,
and expressing the velocity of a point O, on the axis of the second gear:
0=(-0,0,-0,-0,4-w,)i =—(r,+1,)i o, -nio,
it follows that

noo n+r
Wy ==
r 7

The radiuses r; and r, are measured at pitch circles and pitch is equal on both gears.
It follows a direct proportionality between these radiuses and the number of teeth
z; and z, of the two gears. Consequently the reduction factor is:

a)ZO _

a)l 0

2

Z,
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12.9. Superposition of particular motions of rigid bodies. Relations
for accelerations

In order to determine the acceleration of M with respect to the fixed Cartesian
frame Oxyz it shall be considered the acceleration of M with respect to O;x,y,z; as
a relative acceleration, the acceleration of the point belonging to the O;x;yiz; and
coinciding with M as an acceleration of transport and it will also be considered the
Coriolis acceleration. It follows that:

a4, =0y + &, X7, + @, X (@, XT;)
a4, =@, + &, X1+ @, % (@, xT) (12.31)
a, =20, x(v, + o, x7,)

Consequently:

a,=a,+a,+&,x7 +&, X1 +®,x(®,x7)+
M_ 10_ 21_ 10 _l il 2_ 10_ 10 1) (1232)
+a)21 X (0)21 x 7'2) + 20)10 X (v21 + a)Zl x ’/‘2)

The last formula can be generalized for » moving Cartesian frames
OxXyizi, ... Ox,ynzn. It 1s obtained:

a,=Y|a, +&, x7+a, x(a, x7)]

M ii—1 ii—1 i ii—1

(12.33)

* 212;:12[ 0 ;1 % (‘71’,1‘71 t@, % 17,)]

J=1

Another point N belonging to the rigid body is now considered. The following
relation holds:

a,=a,+&,xMN+®, x(®,xMN). (12.34)

In this formula, @, has the expression (12.33) and @, has the expression (12.23).
In order to determine &

n0?

it is necessary to differentiate the relation (12.23). A
certain vector @, ,is defined by its projections on the axes of the moving Cartesian
frame Oxx;y:z;. By virtue of (12.4) it follows that:

d(T)l i1 a@z i-1 — — — ! — —
=+ @ XD, =E,, | 20, | |xX©,,
dt at i i,i i,i = JsJ L
' (12.35)
i-1
:6_‘1171 +(Za_)/ /ljxd_)lzl
j=1
Consequently:
da_) n da_)_ n n [—1_ _
= dtm = dt ~=>8,, + D, X0, . (12.36)
i=1 i=1 i=1 j=1



It follows that the absolute angular acceleration &,, is not equal only to the sum of
relative angular accelerations ¢, , . A complementary angular acceleration:

n_i=1

=220 X0, (12.37)

i=1 j=1

must be added to this sum.

Example:
The disc of radius r rolls on a circle of the radius R (see figure) with constant

angular velocity m,;. Determine the velocity and the acceleration of an arbitrary
point M of the disc.

Denote by Oxyz the fixed frame (attached to the Earth), by O;x;y;z; a moving
frame that rotates about a vertical axis passing through the center of the circle of
the radius R

Y=Y1=Y1 and by 02x2y222
a moving frame

attached to the

JIE disc. Suppose
— that the axes of
these three
frames are
. coinciding  at

{ : o the considered
W\ 7 time. The
R coordinates of a
certain point M

of the disc are x, y, R.

Fig. 12.7 A disc rolling around a vertical axis

From the given data and the orientations of the given vectors it follows:

=wk; ¢,=0;, &,=0;,v,=0; v,,=0; a,=0; a, =0;

)

0

" w7 @
=——wj, 21
R

7F=xi +y] +Rk
Applying the formulas (12.28) and (12.36), it can be obtained:

— = — _ r - ];. — _ = — — — _ ra)zT
6020—60104‘0)21——}0)]-0-60 s 6y =& T E, T, X0, =— R l

The velocity and the acceleration of a point M become:

r7 K
X7 =0 2@ a):—(y+r)a)z+xa)]+Exa)k,

x y R
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i j ok 7 ik
a:a0+gzoxr+a)2ox(a)zoxr):—r;) 0 O]+ 0 —;a) 10}
R
v ~(y+r)o  xo .
R
7’2 rey
=—|1+— x0T —y&’j—(r+2 k

If M is for example successively 4(0,-r,R), B(0,r,R), C(-r,0,R), D(r,0,R), E(0,0,R),

the velocities and accelerations are:
2

— — = — - - r 1
v, =0, v,="2rowi; V,=-rwi —ra)j—Ea)k;
2

— = - r 7 — =B

V,=—roi +roj +E(0k; vV, =—Twl

2 2 2 2 2 2 2
_ - re - _ — S r - re -
a,=ro’j+ ky a,=-ro’j -3 ky a.=|1+— |ro'i - k;

R R R R

2 22 2 2
_ r - reo - _ ro -
a,=—|1+— |ro’i - k; a,=- k

R R R

12.10. Fundamentals of mechanisms kinematic analysis

A mechanism is a system of bodies designed to convert motions of one or several
bodies into constrained motions of other bodies. A solid body or fluid component
of a mechanism is called a mechanism element. A mechanism element carrying
kinematical paring elements is called a link. Contacting elements of links
permitting their constrained relative motion are called a kinematical pair. Examples
of kinematical pairs are shown in Fig. 12.8 with their degree of freedom.

The kinematical pairs have simple independent motions such as translations or
rotations, required to generate the relative motion of pairing elements. Examples
are: the revolute pair (Fig. 12.8 a) which allows the rotation of one link relative to
the another, the cylindrical pair (Fig. 12.8 b) which allows a rotation about a
particular axis together with an independent translation in the direction of this axis,
the prismatic pair (Fig. 12.8 c¢) which allows only a rectilinear translation of one
link relative to another, the spherical pair (Fig. 12.8 d) which allows independent
rotations about three concurrent axes and the helical (screw) pair (Fig. 12.8e)
which allows a screw motion of the two links.
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Fig. 12.8 Examples of mechanisms

A number of rigid links connected by kinematical pairs form a kinematical chain.
A kinematical chain may be open (Fig. 12.9 a ) or closed (Fig. 12.9b).

A mechanism is a kinematical chain with a defined motion. The mechanism
element assumed to be stationary or to be either a support or foundation is called
frame. The mechanism element that transfers mechanical energy at least to one
other mechanism element directly connected to it is called a link.

A K

b)

a)

Fig. 12.9 Open and closed kinematical chains

A mechanism may have one or more driving links. Two mechanisms are shown in
Fig. 12.10: the first has one driving link while the second has three driving links.
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Fig. 12.10 Mechanisms with one or several driving links

12.10.1. Position analysis of a mechanism. Condition equations

It is considered a loop of a plane mechanism with 7 links and # rotation pairs and a
polygonal contour with n line segments having their extremities in rotation pairs
each line segment being attached to a link (Fig. 12.11).

Fig. 12.11 A plane mechanism with four segments
The line segments can be considered associated to geometric vectors /. It will be
denoted by x; and y; the projections of the vector on the axes of a fixed Cartesian
frame Oxy. Also by /; will be denoted the constant modulus of this vector. The
following condition equations are evident:

dx, =0, D> y=0; x’+y’ =1 i=l.n (12.38)

If the plane mechanism has more loops, the condition equations (12.38) can be
written for each independent loop.

If the plane mechanism has a prismatic pair between the links i and i+/ the angle
a; i+ 1S constant and a new condition equation can be written

xx_ +yy. =l cosa (12.39)

P77+ iTi+l i,i+1

Note that in this case, /; (or /;+;) is not constant but it becomes a new unknown.
Therefore a prismatic pair introduces a new unknown and a new condition
equation.
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In general a mechanism has a frame, a driving link and driven links. Note that only
the projections x; and y; of the vectors [ corresponding to driven links are

unknown. Obviously, the projections of the vector corresponding to the frame are
known. The projections x,, and y,, of driving link at time # may be determined.

If 0 is the angle between the Ox axis and the vector corresponding to the driving
link at time ¢ and 6 + A6 is the same angle at time ¢ +A¢ it follows that:

x,(¢)=1,cos8(6);y,(¢)=L,sin(6);
x,(1+A)=1, cos(0+A0) =1, cosOcosAG—1 sinfsinAO=x, (¢)cosAO—y, (¢)sinAG(12.40)
v, (t+M) =1, sin(0+A0) =1 sinfcosAO+1, cosOsinAG=x, (¢)sinAG+y, (r)cosAb

These relations may be written in a matrix form:

(xm (1+AI)J:{COSA9 —sinAQ}(xm (z)] (1241

v, (t+At)) [sinA@ cosAf ||y, (¢)

If x,(0) and y, (0) are known and for example if A =10"it is possible (by using
(12.41)) to calculate the projections x, and y for 36 positions of the driving link.

If the mechanism is a three dimensional spatial one the condition equations are
more complicated. Considered here is a loop of a three dimensional mechanism
with » links and # rotation pairs.

z Vi Vi
041 Ji+2 Vi
031

O -
y
X

Fig. 12.12 A three dimensional mechanism link

A polygonal contour with 2n line segments: some line segments are placed on the
rotation pair axes; other line segments are intersecting these axes. Three successive
line segments of the polygonal contour belonging to the same link are orientated by
the vectors v,,v, and v,_,. Denote by 6;;+; and 6,;+, the angles of vectors v,,v, ,and

of the vectors v,,v,_,.

Obviously these angles (and also the angle 6;+;;+> of vectors v_,,v. ) are constant.

i i+2
Denote by x;, y; z; the projections of the vector v, on the axes of a fixed Cartesian
frame Oxyz and by /; the constant modulus of v, (the length of the line segment).

The following condition equations are evident:
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2x =0 XYy=0  3z=0

xX+y 4zt =0 i=1...2n

( ) _ (12.42)
xixi+1 + y[yHl + ZiZHl = llli+1 cos 9i,i+l (l = 1 """" 2n
xixi+2 + yiyi+2 + ZiZi+2 = lili+2 Cos 9i,i+2 (l = 1 """ 2”)

with the convention for indexes: (2n+1)=1, 2n+2)=2

If a pair is a cylindrical or prismatic one (but not a rotation pair) then the length of
the corresponding line segment of the polygonal contour is no more constant and it
becomes a new unknown. In the case of a prismatic pair a new condition equation
may be written, because the angle between the two line segments is constant. If a
pair is a spherical one, then 5 line segments of the polygonal contour may be
considered to be equal to zero.

Note that only the projections Xj, Y;, Z; of the vectors attached to the driven
links are unknown. Obviously, the projections of the vectors attached to the frame
are known. The projections X, Y., Z, of a vector attached to the driving link at the
time ¢ may be determined. If @ is the angle of rotation of driving link (measured
from an initial position for which 6=6)) at time ¢ and 6+A486 is the same angle at
time 7+A¢ the relation between X, (t+4¢), Yiu(t+At), Z,(t+At) and X,(1), Yiu(t), Zun(?)
may be written in the matrix form :

X ] |cosO+a’ (1-cosf)ap(1-cosd)—ysinbay(1-cosd)+ fsiné [ x (0)
Y, |=| fa(1-cosB)+ysinOcosO+ B (1—cosb) By (1—cosf) —asind || ¥, (0) |(12.43)

m

Z, | | ya(1-cos@)— BsinGyB(1—cosb)+asinbcosd+y* (1-cos) | Z,(0)

where o, f and yare direction cosines of the axis of rotation.

If X,,(0), Yu(0) and Z,(0) are known and for example at &=10°, it is possible
(using the formula (12.43)) to calculate the projections X,, Y, and Z, for 36
positions of the driving link. The condition equations form a nonlinear system. If
the unknowns are denoted by xi,...,xy this system can be written in the general
form:

fi( %, xy, 1) =0 (12.44)
fulx, wux,, ) =0
or simpler in matrix form :
(f(xi) ) =10} (12.45)
where
{Hxt) Y =/ fi] (12.46)
Given are the initial positions of all the links of the mechanism
{f(x,.1)} ={0} (12.47)
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It 1s assumed that @ is very small. Then X, (4¢?) - X,.(0), Yu(At) - Yu(0), Zn(At) —
Zn(0) are also small. By replacing in (12.45) the projection X,,(0), Y.(0), Z.(0) by
Xn(At) Yiu(At) Z,,(At), then:

{/(x,An)} = {0} (12.48)

but it is also very small. The Newton — Ralphson method can be used. The
following recurrence formula is obtained:

{x}, ={x},, —()), ) (12.49)
where (J) 1s the matrix of the Jacobian of { '} i.e. :
9, o, |
6_x1 ............ a
J=.. . (12.50)
oy Iy
_O_xl ............ a_

Suppose the solutions { f (x,At)};t{O}is known. By replacing in this equation
Xo(AY), Yu(AL), Zu(At) by Xn(2A1), Yn(241), Zn(241) then { f(x,2A1)} #{0} , but it

is very small. The Newton Ralphson method can be used once again. If A8is small
e.g. 10°, it is possible to obtain 36 positions of the given mechanism.

12.10.2. Kinematic analysis of a mechanism

In order to obtain the velocities, is necessary the derivative of the matrix equation
with respect to the time t. The solution is:

(J){x}+{%}={0} (12.51)

It follows the expressions of the velocities:

(x=—(J)" {%} (12.52)

If Xon(?), Yi(t), Zu(t) are the projections of a vector attached to the driving link, then

X

m?

Y,,Z (the elements of {%} differing from zero) have the expressions:

X, =(BZ,-yY,)o

Y =(rX,-aZ,)o (12.53)
Z, =(a¥, - BX, )0
For a plane mechanism these expressions become:
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X}'n = _Y:na)

. (12.54)
K?1 = Xma)

In order to obtain the accelerations the derivative of the matrix equation (12.51)
with respect to the time t must be obtained. The result is:

(J)(jc‘>+(]){x}+{%2 / }:{o} (12.55)

It follows the expressions of accelerations:

(it =—(J)" {‘Z{ } +(J) (J) () {g_{} (12.56)

2
The components of {ZZ{ } differing from zero, X ,¥ and Z have the

expressions:
X, =(Bz,-yY,)e-[(B+7")X, —apY, —ayZ, |
Y =(rX,-az,)e-|-paX, +(y’ +a’)Y, - ByZ, | (12.57)
Z,=(aY, - pX,)e~[-raX, - yBY, +(a’ + f*)Z, |

For a plane mechanism, these expressions become:

Xm = Ymg - Xma)2

Y =X ¢-Y & (12.5%8)
C Example 1

Write the condition equations and
the expression of (J) and (] ) for

the plane mechanism shown on Fig.
12.13. All lengths are given.

The condition equations are:

Fig. 12.13 A quadrilateral mechanism

X, + X +X,+X, =0
Y +Y+Y,+Y,=0
X} +Y?-1’=0
X2 4+Y - =0

The expressions of (J) and (J ) are:
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(11 0 0 ] (0 0 0 0 |

0 0 1 1 0 0 0 0
J)= ; J)= . .
) 2X,0 2Y 1 ) 2X,0 2Y, 0

| 02X, 0 2V, | | 02X, 0 2, |

Write the conditions equations
and the expressions of (J) and

(J ) for the plane mechanism
shown on Fig. 12.14.

The condition equations are:
X, +X +X,+X,=0

Y +Y+Y,+Y,=0

X} +Y?-1’=0
X;+Y—1;=0

XX, +YY, —1l cosa=0

Fig. 12.14 A quadrilateral mechanism with an internal slider

The expressions of (J) and (J) are:

1 1.0 0 0 ] 00 0 0 0 |
00 1 1 0 000 0 0
(/)=| 2x,0 2v, 1 -2, |7 (J)=|2Xx,0 2¥ 0 -2
02X, 0 2v, O 02X, 0 2Y, 0
X, X, Y, Y -lcosa|] _)'(2 X Y, Y 0 |
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13. DYNAMICS OF A MATERIAL POINT

13.1. Dynamics of a free material point

It is assumed a free material point and Newtonian force F acting on it, i.e. a force
depending only on the position vector 7, or also on the velocity v and possibly

depending explicitly on the time t. The fundamental law of dynamics can be
written:

ma =F(7,v,t). (13.1)
The projections on the axes of a fixed Cartesian frame of this vector equation are
mx = X(x,y,z,x,y,z',t)
mj}zY(x,y,Z,)'c,j/,z',t) . (13.2)
mz = Z(x,y,z,fc,)'/,z',t)

These equations form a system of three differential equations of second order. The

general solutions depend on six constants. Suppose that these solutions are
x=f(tC.C,.C,C,,C,C,)
y=g(1,C.C,C,C,C,C,). (13.3)
z=h(tC,.C,,C,,C,,C,,C,)

To determine these constants, it is necessary to know the initial conditions (for

t=0). Suppose that these initial conditions are:

X=X5 YV=DYo» Z2=2Z,,

X=v Y=V, 2=V, (13.4)
It follows that
7(0,¢.c,.C,.C,.C,,C,)=x,
g(0,C.C,.C,,C,.C,,C,)=1y,
n(0,c,.c,,C,,C,,C,,C,) =z, (13.5)

f'(O,Cl,CZ,C3,C4,C5,C6):V0.
g'(0,¢,.C,.C,.C,.C,C,)

X
253940 Vyo

n'(0,C,.C,,C,,C,,C,,C,)=v.,

2939~y 5

These six equations form a system of algebraic equations permitting in many cases
of interest to express the six constants Ci,..., C¢ with respect to the given initial
conditions. If these six constants are obtained by solving the system of (usually
nonlinear) equations(13.5) and are afterwards injected into the general solution
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(13.3), then is obtained the particular solution:
X= x(l,xo,yo,zo,vm,vyo,vzo)
y=y(t,xo,yo,zo,vxo,vyo,vzo). (13.6)
z= z(t,xo,yo,zo,vxo,vyo,vzo)

This particular solution represents parametric form of the equation of motion really
taking place.

13.2. Motion of a heavy free material point neglecting air drag

A fixed Cartesian frame Oxyz (Fig. 13.1) is considered. The origin O is in the
initial position of the material point; the Oy axis vertical and the Ox axis placed

such that the initial velocity v, is situated in the vertical plane Oxy.

y? P(x,y)

\/

Fig. 13.1 Free motion of a material point in gravitational field and in vacuum

The fundamental equation of dynamics becomes:
ma =mg . (13.7)

The projections of this equation on the axes of the Cartesian frame Oxyz (Fig.
13.1) are:

=0
j=—g. (13.8)
=0

By successive integration of these ordinary linear differential equations of second
order, the following expressions for velocity and acceleration are obtained:

‘ x=Ct+C,

x=C, ,

y=—gt+C,; y=—g%+C2t+C5 (13.9)
2=G Z=Cy+C,
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The initial conditions, according to above given information are:

X=v,cosx x=0
y=v,sina; y=0 (13.10)
Z - 0 zZ = 0
It follows that:
C, =v,cosax C,=0
C, =v,sina; C,=0 (13.11)
C =0 C,=0
The particular solution, representing the motion is:
x=vytcosa
t2
y:—g3+votsina (13.12)
z=0

It follows that the path of the material point is situated into the Oxyz plane.
Eliminating the time ¢ in the parametric equations(13.12), the equation of the path
in the form:
g
2

—— X’ +xtana (13.13)
2vycos” a

y =
Therefore the path is a second degree parabola.

Remarks:

a) The parabola intersects the Ox axis in two points O, the starting point and
another point A (Fig. 13.1). If the material point is a projectile, the length of the
segment OA 1is called range of the projectile. The projectile strikes the ground

g

2

2
> X" +xtana,
2v, cos” a

when y = 0, so the two points verify the condition: 0=-

from which
x,=0
2v;sinacosa v, . . - (13.14)
X, = =—-sin2a
g g

Note that the range of the projectile reaches its maximum for o =45°, which is the
2 2

d
result of 4 =20 cos 20 = 0. It follows that (x,) = o
da g max
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b) The highest point attained by the projectile on the parabolic path is obtained by

lettlngﬂ = —%x +tana =0.

dx v, cos” a

It follows that:

. ve .
sina cosa = —sin2a
2g

2
Yo
X = —
H max

(13.15)

2

V(X ) = ;}#:gsin2 a

If the initial velocity has a vertical direction (& =90"), the maximum height is:
Y

ymax ('meax)_ (1316)

= 2
c¢) A projectile can be launched with a velocity v, in any direction. Which is the
region in space that can be reached by the projectile?

The equation (13.13) can be written as
2
tan’ o — xtana + y + & _o (13.17)

2_2

gx’

2

y+i2(1+tan2 a)x2 —xtana =

2v, 2v, vy

Fig. 13.2 Geometrical locus of reachable positions for a launched projectile

This equation can be considered as a second degree equation in (tan «). Real
solutions exist if and only if

2 2
xz_4g_x2(y+gx Jzo, (13.18)

2v, E
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from which a condition relating y to x can be obtained:

y<o & (13.19)

Therefore, the region in plane that can be reached by the projectile is the inside of a
parabola (Fig. 13.2). The region in space shall be the inside of a paraboloid of
revolution, possibly intersected by the ground surface.

13.3. Motion of a heavy free material point considering air drag

Let R be the drag force applied on the moving particle (material point) in the air.
This force is acting in the opposite direction of motion:

R(V)=-f(v)T, (13.20)

in which 7 is the unit vector tangent to the path of the particle and f(v) is a positive
definite, monotonic increasing real function. The fundamental equation of
dynamics can be written:

ma=mg - [ (v)7. (13.21)

The projections of this equation on the axes of the moving frame of Serret - Frenet
are:

ms =mv=-mgsin@— f(v)

V2 (13.22)
m—=mg cost

z
Fig. 13.3 Free motion of a material point in gravitational field and considering air drag force
These equations can be rewritten using the following expressions:
. dvds dv d [V’
vV=———=y—=—| — ’
ds dt ds ds
dy dx

sinf=—; cos@=—; p=
ds ds r

(13.23)
ds

do

__ 4
do
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In the last expression, the minus sign has been chosen from physical consideration
of decreasing slope () for the falling particle, keeping positive the curvature radius

p. The new form of (13.22) is
d (v d v
( j:_g_y_ﬁ

E? ds m

Vdo  dx g dy
ds  °ds tand ds

(13.24)

Properties of the motion:

a) Considering two positions of the particle along its path, of identical height yy =
yn (M on the ascending arc MP of the path and N on the descendent arc PN), it
can be stated that at the same height, the velocity in the ascending motion is higher
than in the descending motion: |vy| > [vn| (Fig. 13.4).
Indeed, by integrating the first equation (13.24) on the arc MN, it follows
that:
i—izy _y oL qS £(v(s))ds . <§ f(v(s))ds  (13.25)
MO m '

2 2 MPN MPN

Since f{v) is a positive definite function, it follows that: vy, <v;,or [v,|<[v,|

y A VM

\

Fig. 13.4 Velocity on the descending arc is less than on the ascending arc

b) If 6y and Oy are the angles of the velocities v,, and respectively v, with the Ox

axis, then at identical height the angles with the horizontal direction are smaller in
the ascending motion than in the descending one: |6u] < |6n].

Indeed, by integrating the second equation (13.24) on the arc MN, it can be
written:

@tanadez—gng—{, (13.26)
MN MN v
or after successive operations on the left and right terms:
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Cﬁ tan d6@ = —In(cosd, )+ In(cosb,, ) =In cos b ;
MN

cosd,
4 P J 4 P (13.27)
34 34 24 4 4
_gc'ﬁ_zz_géT_quT:_gqs_2+g<.ﬁ_2>o
Y Y Y wp Y NV

The last inequality is based on property (a), velocities being higher on the MP arc
than on the NP arc. The consequence is

1n 508 6,

>0 = cosd,, >cosl, = 6, <0,. (13.28)
cos@,

c¢) The horizontal projection of the path is larger on the ascending arc than on the
descending arc: MQ > QN.
The integral of the second equation from (13.24) becomes:

_ _f Ay _ _pody ¢ dy
MQ_i,dx_itanH’ QN_idx_itane_itaﬂﬂ’ (13:29)

Since 0 and implicitly tan 0 are greater in modulus on the NP arc than on the e MP
arc, it follows that MQ>QN.

d) The absolute value of the velocity reaches a minimum value on the descending
branch of the path.

From the first equation (13.24) it follows that at the vertex P, the modulus of
the velocity decreases, since:

d (‘;i]:—gsinO—M<0. (13.30)

ds m

For the descending branch of the path, the angles 6 are negative, so that there could
be an angle 6,, for which

gsing = /). (13.31)
m

which represents a condition of minimum for the absolute value of the velocity,

2
due to the expression afv =0.
ds\ 2
e) There is a limit velocity vi, which is the solution of the equation: mg = f (v, ).

The velocity decreases after passing the vertex P, until reaching the angle
0,,<0 for which f(v)=mgsin(—6,). After this point, the velocity might increase
again as the angle 0 should continue to drop towards the vertical direction:
—% <0 <0, .Butexactly at this angle, the first equation (13.24) is:
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2
LY _gsing —"8 —_g(1+sind )<0. (13.32)
2 " !

ds m
It follows that after reaching this angle, the velocity continues to decrease, a fact
which is incompatible with the previous minimum condition. It follows that the

minimum velocity will be reached for a given position on the descending branch,
but this position is at infinite distance from P.

f) The path has a vertical asymptote.
It will be assumed that the velocity on the descending branch increases up a finite
limit value vi.. From the second equation (13.24) it follows:

-r/2 X,
—j v2d9=gjdx. (13.33)
0 Xp
and integrating with the given limits:
2 2
x, =x,+2 (13.34)
g

which is a finite distance, representing a vertical asymptote.

13.3.1. Case of drag force linearly dependent on velocity
A particle of mass m is launched with a velocity v, in a vertical plane Oxy, making

an angle o with the horizontal Ox axis. The drag force R, is assumed to be
dependent on velocity as:

R(v)=-oT =—cv =—c(xi +Jj ), (13.35)

in which ¢ is a positive constant. The fundamental equation of dynamics can be
written:

ma =mg —cv . (13.36)
The projections of this equation on the axes of the fixed Oxy frame are:
{mf:_cx , (13.37)
my =—mg —cy

The characteristic equation of the homogeneous differential equation is

A*+ BA=0, with two real solutions: 4 =0and 4, =—4, in which #=-. The

general solution of the first differential equation is: "
x(t)=C +Ce™, (13.38)

The second differential equation is non-homogeneous, but the homogeneous part is
similar to the first equation. It means that a particular solution must be added to a
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similar solution, to get the general solution.

O VOL A ‘\ X

Fig. 13.5 Free motion of a material point in gravitational field and considering air drag force

One such particular solution is y, (t) =—[gt, so that the general solution of the

first differential equation is:
y(t)=C3+C4e_ﬁ’—%t. (13.39)

A system of algebraic equations in constants C;...C, 1is obtained from the initial
conditions:

7(0)=-BC,e™”" —%:vosina

)
)
P (13.40)
)
)

This algebraic system of equations in C;, C,, Cs, C4 can be solved, obtaining the
solutions:

C,=—C, =—"—ﬂ°cosa; C4=—C3:—%(%+v0sinaj. (13.41)

The solution to the particular given problem is:

x(1)= %cosa(l —e’ﬂ’);

1 (13.42)
g : -p\ 8
y(t :—(—4—1/ smaj -/ )-2¢
) plp ( ) B
The velocity of the particle is:
v — -pr. _| & : -p 8
x(t)=v,cosae™; y(t)—(z+vosmaje 5 (13.43)
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Properties of the motion:

a) There 1s a limit velocity vi, which is the solution of the equation: mg = f (vL ) :
Indeed:

t—0 t—0

limi(¢)=0; limy(z) :—%, (13.44)

2
so that v, =,[0° + (—gj = §, which is the solution of the equation mg =cv, .

B

b) The path has a vertical asymptote.
The coordinate x for theoretical infinite time is:

1imx(z)zv—p§cosa : (13.45)

t—0

which is a finite distance, representing thus a vertical asymptote. All the other
properties proven in the general case can be verified in this particular case.

13.4. Motion of a free material point submitted to a central force

The fundamental equation of dynamics becomes:
ma =Fp, (13.46)
in which F is the projection of a central force, meaning a force whose support line

passes through a fixed point O at any moment in time andp :|rT| is the

r
corresponding unit vector (Fig. 13.6). If F>0, the central force is called repulsive,
and attractive if F<0.

I
\

\
<

|
<

Fig. 13.6 Motion of a particle in a field of central forces
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If OM =7 is the position vector of the material point M, it follows that: F || 7.
Consequently the vector product 7 x F = 0. The consequence is

7><c7:7x%:d(?xV)—%szd(17><\7)—\7><\7=d(17><\7):6 (13.47)

It follows that:
Fxv=C (13.48)

in which Cis a constant vector (constants modulus and direction). The scalar
product of this expression and the position vector is a null vector:

C-7=(rxv)r=(rxr)v=0. (13.49)

Assuming C;, C,, C; to be the Cartesian projections of C and x, y, z those of 7,
the last relation can be rewritten:

Cx+C,y+Cz=0. (13.50)

This last expression represents the equation of a fixed plane, passing through the
origin O. The consequence is that the particle submitted to central forces has a
planar path and the plane including the path is fixed.

The motion can be better studied in a system of polar coordinates included in the
plane of the motion.

m(i" - réz) =F
. . . (13.51)
m(r6 +2i0) =0
The second equation can be written:
.. R I N 1d .
r0+ 270 =—(r'0 +2r0) =——(r’0)=0. 13.52
u )= () (13.52)
It follows that:
P?0=C. (13.53)

It has been proven that 26 =2Q (§10.9) where Q is the area velocity. It can be
stated that during the motion of a material point submitted to a central force, the
area velocity (or rate of sweeping out area) is a constant.

The relations (13.50) and (13.53) represent two general properties of the motion of
a particle acted only by a central force, the first two laws of Kepler (1609,1619).
An important class of problems requires the path of the particle rather than its time
dependency. In such cases time can be replaced in the differential equations,
leaving two parameters: polar radius (r) and position angle (0).
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Using the changes of variable:

dr drdé’ Cdr Cd(lj

At dodr £ do  do

, (13.54)
L 4] (1)}do__C 4 1)
T do\r )| dt r* do?
the first equation (13.51) becomes:
& C* F
—r—=—, 13.55
r* de’ ( j rom ( )
or after rearranging terms:
> (1) 1 Fr?
—|+—=- : 13.56
de’ (rj r mC* ( )
This is known as Binet's equation.
Example
Determine the path of a free material point submitted to an universal attractive

M
: JFl

m’kg-s?), M is the mass of the point O and assumed to be fixed, m the mass of the
material point and r the distance between the two points. Initial conditions are:
initial radius ry, initial velocity vy making an angle o with the initial radius
direction.

Newtonian force F = f where fis the gravitational constant (6.67-10!!

Fig. 13.7 Central force motion of a particle in gravitational attraction field

The Binet’s equation in this case is
a (1Y 1 mM
—|+—==. 13.57
a6’ ( r j r C? ( )
The solution to equation(13.57), from elementary differential equations, consists of
a homogeneous (or complementary) part plus a particular part.
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The associated characteristic equation A°+1=0has imaginary solutions. The
homogeneous part is a sum of harmonic functions and the particular part has the
form of the right side if the equation:

l:ACOSQ+BSin0+%. (13.58)
r

The two constants are obtained from the initial conditions (at t=0, r=r, and 6=0).
The velocity in polar coordinates has components: 7 and r@, requiring

1

——7=(-Asin@+ Bcos)0 = (~Asin 6 + Bcosé’)g2 : (13.59)
r r
The two initial conditions are written as:
l =4+ ﬂz
% C . (13.60)
B-C=—F=—(v,cos)
Moreover the motion constant C = (rzé)‘t .= 7 Vo SINE _ rv,sina, so that the
_ r,
two constants become
1 M
A=——ma—
ry KvysinTa
. (13.61)
B=-
r,tana

The equation of motion is obtained by replacing the two constants in (13.58):

l:(l_%jcosé’—;sin6+ﬂz, (13.62)
ro\ry ryvysinTa 7, tan o C
or
CZ
r=— M -- p(e o (13.63)
+ecos(6—
1+C— l—ﬂz cosd — ! sin @ ’
M\, C 7y tan o

By simple identification
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M
2
ecosf, = ¢ [l—ﬂ‘f} (13.64)
M\, C
2
esin g, ¢ 1
rytana
M 1yt
from which
L C (l_fMJ2+ 1
MA\\r, C (r, tanr)’
; (13.65)
_ r,tanx
0, = arctan —ﬂ 1
c?

0

called respectively eccentricity (e) and parameter (6y) of a conic.
The conclusion is that the path of a material point in a central force field is a conic:

p
= . 13.66
: 1+ecos(6-6,) ( )

From the first expression of (13.65) the condition e=/ implies for the initial
velocity:

M (13.67)

"o

VO =

From analytic geometry, the nature of the conic depends on the eccentricity:

2
|e|<1:> Vv, < f M = Ellipse
rO
e=1 =y, = /2W = Parabola (13.68)
7o
|e| >1 =y, > /Mj Hyperbola
rO

and is independent of the initial angle a. The ellipse becomes a circle if e=0.
For an ellipse, two important cases are defined:
a) If 0<e<I, then for 8 = 0 there is a closest point to O called perigee.
b) If -/<e<0, then for 6 = 0 there is a farthest point to O called apogee. This
kind of ellipse is called subcircular.
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It has been proven that the nature of the path is independent of a. This suggests a
particular choice of the Ox axis with respect to the path, such that for 6=0 the
velocity is perpendicular on the Ox axis (a=n/2). In these conditions (13.61)
becomes:

1 M
A=—-"=
rooTv, (13.69)
B=0
and the formula for the eccentricity becomes
2.2
ez 1M (13.70)
M\, ver
so that the path can be expressed as
2.2 2.2
o Vo v Vo
r= — M =7 M k (13.71)
+ ecos
14 0% l—szz cosd ¢
M, iy
AY
7y i
: ) +vo
b : 1
A | x
\ 4 | >
| 0 P
a L!
g
_ | _
< : >

Fig. 13.8 Elliptic path in symmetric frame. P=Perigee; A=Apogee; O=focus

The distance between the focus O and the crossing points to the Oy axis are called
semilatus rectum and are obtained from (13.71) for 6=xr/2:

_ v
™
Using this distance, the distances to the perigee (OP) and respectively to the

apogee (OA) can be written:

/ (13.72)

) [
s :}/EB:O) :m, r, :I"(g:”) :E (1373)
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The ellipse semi-major axis is then a = Tp err" = " / - By definition the ellipse
—e

eccentricity is e’ =a°—b’>, so that the semi-minor axis becomes

b=a\Jl-¢e" = # By definition the area of the ellipse is

Ji-¢*
/ / xl? ) 3

A=rmab=r 5 = =mal—-e

l-e” J1-¢? (l_ez)2 (1379

| w

First cosmic velocity
An Earth’s satellite is an object having an elliptic orbit with the Earth in one focus.
From the eccentricity formula (13.70)

_Vgro
M

It follows that a minimum velocity (v;) exist for e=0, which corresponds to the
circular path. Consequently

1. (13.75)

Vo=V, = ﬂ (13.76)

A circular path is considered close to the Earth’s surface of radius 79y=6370 km
(tens or even hundreds of kilometers are a negligible height). The universal
attraction force is responsible for the weight of the bodies on the Earth’s surface,
SO

mg:fmy. (13.77)

To
For the Earth the product fM = gr; =9.81-6370000° =3.98-10" m’s™ and from
(13.76) can be deduced the first cosmic velocity

v, =+/gh =7.905 kn/s . (13.78)

Second cosmic velocity

The minimum velocity required for a satellite to leave the Earth is the velocity
necessary to pass from elliptic (or circular) to a parabolic path. From (13.68) this
second cosmic velocity can be written as:

vy= [Py 211179 ks, (13.79)
To

It has to be mentioned that the Earth is assumed to be fixed in the above solution.
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13.5. Theorems of Dynamics for a Material Point

13.5.1. Momentum of a material point
Definition
The momentum or linear momentum of a material point of mass m, moving with
velocity v is defined by the vector:

H=mv. (13.80)

Theorem of momentum
The derivative of momentum with respect to time equals the force acting on the
material point:

d—ljzﬁ. (13.81)

Proof

H d(mv d(v _
di _d(mv) _ d()_ - F (13.82)
dt dt dt
It has been taken into account that the mass of the material point is a constant in

Newtonian Mechanics and use was made of the Second principle of Mechanics
(F =ma).

13.5.2. Angular momentum of a material point

Definition
The moment of momentum or angular momentum about a fixed point O, of a
material point M of mass m moving with velocity v is by definition the vector
product:

K, =7xmv (13.83)
Theorem of angular momentum
The derivative of angular momentum about a fixed point O with respect to time

equals the moment about the same point O of the force acting on the material
point:

dK, - /=
=M, (F). 13.84
— =M, (F) (13.84)

Proof

dK o
0=i(7xmv)=fxmmrxmﬂ:wmmrxma:fw:MO(F)

dt  dt dt dt
(13.85)
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It has been taken into account that the mass of the material point is a constant in
Newtonian Mechanics and also v xmv =0 and F =ma .

13.5.3. Kinetic energy and work for a material point

Definitions
Kinetic energy for a material point of mass m moving with velocity v is defined
by:

T:%mv2 (13.86)

The elementary work of a force F (X Y, Z ) acting on a material point is defined
by the scalar product:

dW = F -dr = Xdx + Ydy + Zdz (13.87)

Theorem
The changing rate of the kinetic energy for material point equals the elementary
work of the force acting on this material point

dT =dw (13.88)
Proof
dW=F-d?zmc?-d?(t)zmﬂ-idtzmﬂdt-izmd\??
dt dt dt dt

L ) ) (13.89)
- md(%) - md{%} - d{m%j —dT

13.5.4. Theorems of Conservation

a) The linear momentum of a material point is constant, if and only if F = 0.

Indeed a:i—i[ =0 < H = const.

b) The projection on an axis of the momentum for a material point is constant if
the projection of the force £ on this axis is equal to zero.

X

dt
c¢) The angular momentum of a material point about the fixed point O is
constant, if and only if the moment of F about O is equal to zero:

For example, if X =0 then

=0 & H_=mv, =const.

dK, - =
Indeed dto =0 < K, = const.
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d) The angular momentum of a material point about a fixed axis A is constant if

the moment of F about A is null.
For example the moment about Oz axis is

M, =xY-)yX=0 K, = m(xvy —yvx) = const.
If the velocity is expressed in cylindrical coordinates (polar radius rp, polar
angle 0 and height z), v=r,p+ rpéﬁ + zk and the position vector is

7 =r,p + zk , then the angular momentum can be written as

p nok
K,=rxmv=mlr, 0 z :m[—erg,B+(fPZ—z'rp)ﬁ+r§9'/;]
i 1,0 2

Assuming again that the moment about the Oz axis is null (Mo.= 0), then
K, = mrﬁé} =2mQ = const.
It follows that the projection of M on a plane perpendicular to the axis A

moves with a constant area velocity (rate of sweeping out area), about the
intersection point of the axis A to the plane.

13.5.5. Theorem of kinetic energy and work based on the force
function

In general, the elementary work of a force F is not an exact differential dU (x, y,
z). For this reason, the elementary work has been denoted by @/ and not as usual
by dW.

If dW is an exact differential dU(x, y, z) then:

FdF:de+Ydy+Zdz=dU=ade+aUdy+aUdz. (13.90)

ox oy 0z

It would be useful to conclude that:

ox oy 0z
but these relations hold if and only if:
ax o or oz oz X 1392
oy Ox 0z Oy Ox Oz

The force components derive thus from U, which is called for this reason a force
function. If these relations are satisfied, then the force function can be determined
from the following contour integrals between state ‘0 and ‘1°, the integral being
independent on the integration path:
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U(x,y,z): (j) X(x,y,z)dx+ (j) Y(x,y,z)dy+ q.D Z(x,y,z)dz. (13.93)

Xo =X Yo 204

In these conditions, the theorem of kinetic energy and elementary work (13.88) can
be cast into the form “The sum of the kinetic and potential energy is constant”:

dT=dU < d(T-U)=0 & T-U=E & T+V=E. (13.94)

The following notations have been used:
e Jis called potential energy (/=-U) and
e F is called the total mechanical energy and is a constant if all forces
applied on a material point can be derived from force functions U, Uy, ...
This theorem is called also the principle of the conservation of energy.

The principle expressed mathematically by (13.94) is one of the fundamental
formulas of Mechanics, and it is largely used in the solution of problems. However
it should be noted that this theorem is valid if and only if, the field of forces is a
conservative one, because in general the work W is a contour integral:

W= @dewdymdz. (13.95)

0-1

Its value depends on the path of the material point from state ‘0’ to state ‘1’ and
thus is unknown ‘a priori’ since in general the path of the material point is to be
determined in the majority of problems concerning particle dynamics.

In these conditions, the theorem of energy and work can be written in a finite form
as:

T—T0=W=95de+ydy+2dz. (13.96)

0-1

13.5.6. Examples of conservative fields

a) The gravity constant field
A heavy material point is acted by a force whose components are X =0, Y =0, Z =
- mg (Fig. 13.9). The conditions (13.92) are accomplished. Applying the (13.93)
formula, it follows that

U=—mg¢ dz =—-mgz, +ngO=mg(zo—Z]) (13.97)
0-1
As a consequence:
W,,,=-V=U=mgAh. (13.98)

A positive work corresponds to a descending motion (A4 =z, —z, > 0), Ah being
the level difference between the initial and the final position on the path.
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60)

mg ‘1°

X

Fig. 13.9 A particle moving in a constant gravitational field

b) The elastic force
The elastic force has the expressionl*: =—k7r , in which k is the elastic constant,

measured in N/m and the origin for the position vector 7 is a position of free form
of the elastic spring.

\J

X

Fig. 13.10 A moving particle acted by an elastic force

The force projections are X =—kx; Y =-ky; Z =-kz. The conditions (13.92)
are verified. Applying the (13.93) formula, it follows that:

U = § Xdx +Ydy + Zdz =~ loedx — § kydy — § kzdz = —%(ﬁ +y’+2°). (13.99)
0-1 0-1 0-1 0-1

Since ‘17 ‘ =k|rF|=kyx*+y* +2z° it follows that the potential energy V has the

expression:

V=—U:—W:%‘I7HF, (13.100)

where |7| represents the deformation of the spring.
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¢) The universal attraction field

The Newtonian gravitational force produced by the universal attraction has the
expression:

mM T pmM_ M (xT + 7 +2k) (13.101)
r |7’| r (x2+y2+22)5

F=—y

The compatibility conditions are in this case also fulfilled. By integration between
states ‘0’ and ‘1°, the force function can be written

U=—finM| ¢ %dx+ $ %cb/+ $ ;édz (13.102)

o0 <x2 +y +22)2 KN (x2 +y' +2 )2 e <x2 +y +7° )2

Fig. 13.11 Particle moving in a universal attraction field of forces

The integrals are independent of path, so instead of the effective path 0-1, can be
chosen 0-a (changing only x), then a-b (changing only y) and finally b-1 (changing
only z). The integrals are:

é al dx:— 1 + 1
O—>a<x2+ 2, 2% 2 2 2\5 5 5 2%
Y Z) (xa+y0+zo) (x0+y0+zo)
) _ 1 1
afb( 2, 2 .2 ;dy_ 2, 2, 2 %+ ., % (13.103)
X +y +z) (xa+yb+zo) (xa+y()+z())
4 d _ 1 1
:EI ? 2 2% ) 2 2 2% 2 2 2%
(x +y +Z) (xa+yb+zl) (xa+yb+zo)

After injecting these results in(13.102), the force function becomes:
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U= fmM ! == 1 1

2 2 2\5 2 2 2\,
(xa Y, 2z )2 (xo + ) +Zo)2

(13.104)
| 11]

2 2 2\3 2 2 2\3 noor
(x1 +y; +z )2 (xo + ¥, +ZO)2

1 0

The state ‘0’ can be taken at 7, — oo, so that for a current position 7, the potential
energy V= -U can be written

mM

r

V=-s

(13.105)

13.6. Dynamics of the constrained material point

A material point is subjected to a given force F and is constrained to move on a
given curve or on a given rigid surface. Applying the axiom of constraints (§ 5.3 —
vol.1) the constraint can be replaced by a force R, called reaction. In this manner
the dynamic problem of a constrained material point is reduced to the dynamics of
a free material acted on by two forces: the given force F and the reaction R. The
fundamental equation of dynamics can be written:

ma =F (7,v,t)+R(7,v,t) (13.106)

In general, computing the motion of the material point implies the elimination of
the reaction force R. One possibility is to apply the theorem of linear momentum
on an axis perpendicular to R, or the theorem of angular momentum about an axis,
about which R has no moment component, or otherwise, applying the theorem of

energy if the work of the reaction R is obviously null. This later situation appears
if the curves or surfaces are smooth.

13.6.1. Examples

a) Mathematical pendulum

A mathematical pendulum is a material point attached to a fixed point by a
weightless and rigid truss or by a weightless and inextensible string. It is moving in
a vertical plane being subjected to the gravitational force. If a truss is used, the
constraint is called bilateral; if a string is used, the constraint is unilateral because
only tension can exist in a string.

The length of the pendulum is /, the initial position My, a certain position is defined
by the angle 0 (Fig. 13.12).

165



—

- N
il AN
/ \
/ \
/ \
/ \
X ! \ X
= | O I; >
\ /
\ /
\ /
N 0 ,
_ . ,
R N
~o - - - M
mg M, mg
vy b)

Fig. 13.12 Mathematical pendulum with bilateral (a) or unilateral (b) constraint

The forces acting on the material point are the weight and the reaction force so, the
fundamental equation of dynamics can be written: ma =mg + R . Projections of
this equation on a polar coordinate frame with polar radius along OM are:

m(i'—léz):mgcosﬁ—R

L (13.107)
m(10+216)=-mgsin0
The second equation completely defines the motion:
é+§sin¢9:o. (13.108)
— : 1 L
The application of the energy and work theorem with: 7| = Emv0 ; I = Emv ,
W =—mgl(1-cos8) corresponds to:
%m(vz—vg)z—mgl(l—cose). (13.109)
It follows that:
v =v; —2gl(1-cos@). (13.110)

This theorem is clearly more advantageous. However the same result can be
obtained by the following calculus, starting from (13.108):

12
do+80sino=0 = 4|0 —i(gcosﬁjzo (13.111)
) de\ 2 ) dt\'l
which means that the constant functions multiplied by 7 are:
2 12
lz%—glcosﬁzlz%’—glcosﬁo. (13.112)
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But §,=0; I0=v; 16, =v,, so that after simplifications, the same expression as

(13.110) is obtained. The obtained result is valid for both types of constraints. A
separation is necessary in the following analysis, based on the type of constraint.

Case of bilateral constraint

e The mathematical pendulum is oscillating if, there exists an angle 6§ =
a<180° for which v = 0.

Imposing v = 0 in (13.110), it follows
Yo

cosd=1- ,
2gl

(13.113)
and the condition for a real solution is |cosé|<1. The upper limit is clearly
verified, but the lower limit leads to

v, =4gl = a=180". (13.114)

The point N (o =180"), the highest point on the circle, is a position of equilibrium.
If the material point is placed at N, it remains at rest. The initial velocity given by
(13.114) is in principle necessary to the particle to arrive at N. However the
material point will never reach this point, because the time required to do so, is
infinite:

N Rds f 1do f 1do
t:jd;: _:I :j
w0V 0w —2gl(1-cos@) 142gl(1+cosd)
175 a6 1 [1% a6 1{ (9 7[)} (13.115)
== |—|—/—==— —J—: —|Inftan| —+— =
g 4 4 o

2 go,/coszg 2V&y
2

e The motion of the mathematical pendulum has an asymptotic nature.
e If v >4gl, there is a circular motion, because the particle will move
beyond N and will return towards M, continuing indefinitely this motion.

COS—
2

Resuming the above results, the motions taking place for bilateral constraint are,
for

e v, <4gl, oscillating motion;
e v, =4gl, asymptotic motion;

e v, >4gl, rotating motion.

Case of unilateral constraint
In this case, the particle can leave the circle if the reaction force R=(0. The
projection of the fundamental equation of dynamics on the normal to the circle can
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be written (13.107)

2
my

=mgcosfd—R. (13.116)

If v is replaced by its expression(13.110), the reaction R becomes:

R=%[v§—2gl+3glcos9]. (13.117)
The reaction possibly vanishes for an angle f3:
4,2
cosg =287V (13.118)
3gl

The existence condition for a real angle @ is |cosf|<I.The lower limit imposes
v; <5gl and corresponds to angles 9>r/2 (negative values for cos 6) or from
(13.118) v; >2gl.
It can be inferred that for given initial velocity, three cases can exist:

e v <2gl, oscillating motion;

e 2gl<v, <5gl, the particle leaves the circle at an angle /8 given by (13.118);

e v, >5gl, circular motion of indefinite duration.

It can be easily remarked that for unilateral constraint the rotation is obtained for
higher initial velocity (vy>5g/) than for unilateral constraint (vy>4g/).

b) Spherical pendulum
The spherical pendulum, contrary to the mathematical pendulum is not restricted to
move in a vertical plane. Only the distance between the particle of mass m and a
fixed point O remains a constant denoted R during the motion.

Fig. 13.13 Spherical pendulum
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If 0 and z are the curvilinear (cylindrical) coordinates of a point M on the sphere of
radius R, the position of the point M can be expressed in a fixed Cartesian frame
as:

x=vR’—z’cos@; y=~R’—z’sin@; z=z; (13.119)

The velocity of M has the following projections:

X :%cosﬁ—\/R2 —z%0sin @
R —z

y:%sin9+\/R2 — 220cosf (13.120)
—Z

VR
z=z
The functions 6(z) and z(¢) can be expressed using the theorem of the angular
momentum projected on the Oz axis and the theorem of energy and work. Since

N,I

N

=m(yz—zx)i +m(zx—xz)j +m(xp—yx)k, (13.121)

= S~

K,=rxmv=|x
X

-

the theorem of angular momentum about the Oz axis is di(KOZ) =M, in which
Z

Mo, represents the moments about the Oz axis of all the forces applied on M. Since
the weight is parallel to the Oz axis and the normal reaction crosses the Oz axis,
Mo.=0 and the theorem states that Ko.=C=constant., i.e.:

m(R2 —zz)ész] = const. (13.122)
The theorem of kinetic energy and work states that 7 —7, =W, :
Em R2—22+(R -z ) —Emv0 —mg(z—zo) (13.123)

Replacing Ofrom (13.122) in the last equation, the following expression is
obtained:

222+ C
R2 _ ZZ
The vertical component of the velocity is then:

—v02:2g(z—zo). (13.124)

z':ié\/(Rz—22)[2g(z—zo)+vﬂ—Cf=i; P(z),  (13.125)
in which

P(z)=(R -2")[2g(z—z,)+v; |- C]. (13.126)
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Investigating the signs of the polynomial in the following table, it follows that
there are three real roots, from which two (z; and z,) lie in the interval [-R, R].
It is known that for the points on the sphere R>z, and in general

) :%Wez ~2)6 > (R - 2) R  so that:
0
B(z)=(R -2 ~(R*~2*) & =(R’ —z)[vi (R -2)6]>0.
Z -0 -R Zo R o0
P3(z) -0 -C1%<0 >0 -C%<0 0

The spherical pendulum winds in general between two planes defined by z = z;
and z = z,. Particular cases are motions on vertical or horizontal circles.

13.7. Dynamics of the Relative Motion of a Material Point

Newton's second principle is valid only for a fixed frame. If the motion is
defined in a frame moving relative to an assumed fixed frame:

a=a,-a-a., (13.127)

where a,,a,.,a,a, denote respectively the accelerations: absolute, relative, of
transport and Coriolis' acceleration. Multiplying this expression on both sides by
the mass m of the given material point, one gets:

ma, =ma, —ma, —ma, . (13.128)

According to Newton's second principle ma, = F , for the force acting on the given
material point, it will be denoted:

F =-ma; F =-ma,. (13.129)

c

The vector F, is called the force of transport and the vector F. is called the Coriolis
force. It should be noted that the vectors F, and F. do not represent real forces
because there is no material system acting on the given material point with these
forces. These are called sometimes "pseudo-forces" or “inertia forces” only for
practical reasons. In fact F, and F are correction terms for Newton's second
principle. The fundamental equation of the dynamics of the relative motion of a
material point is then

ma =F+F +F. (13.130)
where the complete expressions of the inertia forces are

:—mﬁt:—m[ﬁo+a_'x7+a_)x(5x7)] (13.131)

s
I

—ma, =—2maxv,
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It is reminded here that @,,@,£ are the acceleration of the origin of the moving
frame, its angular velocity and acceleration respectively and v, is the velocity of the
material point relative to the moving frame.

13.8. Inertial Frames

Newton's absolute and immovable space could not be identified. A moving
frame, for which Newton's second principle is valid, is called an inertial frame.

It is necessary that F + F. = 0 for any motion and one possibility is
m| @, +&x7 +@x(@x7) |+ 2moxv,=0. (13.132)

By considering two motions having at the time moment ¢ the same position vector
7 and arbitrary relative velocities v' and V", the previous equation yield

m| @, +&x7 +@x(@x7) |+ 2m@xV, =0

_. (13.133)
m| @, +&xF +@x(@x7) |+ 2mox V=0
By subtracting these equations, it follows that
2mox (v, ') =0. (13.134)

Since v and " are arbitrary, it follows that @=0. The angular acceleration is
theng =& = 0. From the equation (13.132) the acceleration , =0.

It can be concluded that an inertial frame has a uniform rectilinear translation with
respect to Newton's absolute and immovable space.

One important consequence can be stated: the uniform rectilinear translation of a
reference frame cannot be determined by any mechanical experiment. This is the
principle of relativity in classical mechanics. Albert Einstein has generalized this
principle for any physical experiment.

13.9. Relative Rest

If a material point is at rest relative to a moving frame, then its relative acceleration
a. =0 and relative velocity v, = 0. It follows hence that Coriolis acceleration @, =0

is also null, and with it the Coriolis force F =0. From equation (13.130) can
therefore be obtained:

0=F+F (13.135)

It can be stated that a material point is at relative rest, if the applied force(s) F
is(are) in equilibrium with the force of transport.
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Example
Determine the relative motion of a particle along a rod having a uniform rotation of

angular velocity @ about the Oz, fixed axis. At the initial moment, x,_, =x, and
X,_, = 0 and the angle between the rod and the vertical Oz, axis is of constant value
o.

A moving frame can be linked to the rod with Ox axis along the rod and Oy axis
permanently included in the Oxoyozo plane. It follows that @, = 0 since the origin is

on the fixed axisand £=@=0.

The relative position of the particle is 7 =xi, so that the relative velocity and
acceleration become successively v. =xi; a, =i .

The transport acceleration

a,=a,+&x7 +ox(0xF)=wk, x(a)l?o x xi_) = ok, x(wxsina) j =—w’xsinaj,

in which k,is the unit vector of the Oz, axis and 7 is the unit vector of the

projection onto OgXgyo plane of the Ox axis (see Fig. 13.14). This last unit vector
makes an angle 0 with the fixed axis O¢x¢ and remains included in the O¢xoyozo
plane during the motion.

. M
z )
_ e y
F.
o | mg Ft YO
1
0=0 /= - ! "
~ 1
6 .
X AX

Fig. 13.14 Relative motion of a particle along a rod

The associated pseudo-force of transport F =mo’xsina (sin a i —cosak ) is

depicted as a wavy line on Fig. 13.14 to emphasize its specificity as pseudo-force.

The Coriolis acceleration is @, = 2@ x Vv, = 2wk, x Xi = 2wisinaj and the Coriolis
pseudo-force can be written F. = —2mexsinc j
The differential equations of motion have projections on the moving frame:
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(Ox) mi =—mgcosa + mow’xsin’ a
(Oy) my =0=-2moxsinad+ N,

(Oz) mz =0 =—mw’xsinacosa —mgcosa + N

The normal reaction between a particle and a material line is normal to the line and
this fact has led to the two projections (Ny and N,).
The first differential equation is inhomogeneous of second order:

X - (a)2 sin’ a)x =—gcosa. The characteristic equation of the homogeneous
counterpart is 4> = @’ sin” @ with two real roots 4 , = @sina. One manner of

writing the general solution of the homogeneous equation 1is
x=C, cosh(wrsina)+C,sinh(wtsina).  One  particular  solution of the

. . cosa :
inhomogeneous equation is x, :gz_—z, so that the general solution of the
@ sin” o
given problem is
: : : cosa
x =C, cosh(wtsina)+ C, sinh(wtsina )+ g2—2 :
@ sin" a
Imposing the initial conditions
cosa cosa

x0=C1+—g2 — :>C1=x0——g2 —

@ sin" a @ sin” a ;

0= C,wsinacosh(w0sina) = C,wsina =C, =0
so that the equation of motion becomes:

cosa : cosa
x= (xo — g—}cosh(a)tsma) 4 E500F

®’ sin” & ®’ sin’
. : : . : gcosa ., .
The distance increases as an exponential function. However if x; = —=———, it is
®°sin” o
. gcosa .. .. .
obvious that for any moment x = x, = —=———. This is a position of relative rest.
®”sin” &

This position may be determined directly from (13.135) as
mg+N +N,+F =0
The equilibrium must be enforced along the Ox axis: —mg cosa + mw’xsin’ o =0.

gcosa

It follows that x = x, = ; Vit

w’sin’ o

13.10. Influence of Earth’s motion

Our planet Earth is rotating around its N-S axis and moves around the Sun and
with the solar system moves into the galaxy. The correction terms due to these
motions are evaluated in order to estimate their influence on a fixed or moving
material point.
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A frame attached to the Earth’s surface Oxyz is moving with the Earth. Two basic
motions exist simultaneously: the motion of revolution around the Sun and the
rotation about its North-South (N-S) axis.

The Earth revolves around the Sun in 365 days and 5 hours or 8765 hours, along an
ellipse with low eccentricity (minimum/maximum distance Earth-Sun: 146/152
million km), included in the ecliptic plane, the geometric plane containing the
mean orbit of the Earth around the Sun. Its N-S axis is tilted by an angle of 23°27”
measured from the perpendicular on the ecliptic and the principal effect is the
existence of seasons.

Fig. 13.15 Earth as a moving frame

Because of this low eccentricity, the mass center of the Earth can be assumed to
have a uniform circular motion around the Sun and its acceleration is:

2 2
a 2(2_”] Rsz(z—”j 148-10° = 0.0059.m / ° (13.136)
0 T 8765-3600

This acceleration is negligible compared to the mean valued acceleration of
gravitation g = 9.81 m/s, so that with sufficient accuracy, the influence of the
motion of revolution can be neglected.

13.10.1. Equilibrium of a hanging particle on Earth’s surface

The rotation of our planet about its N-S axis can be considered to be a uniform
rotation (£ =0), because the variation of its daily rotation duration is negligible.
The extremely small variations are due to, among other causes, the slow mass
increase caused by falling meteorites.

The frame attached to the Earth has its center O at latitude A (angle measured
between the local radius of the Earth and the equator plane (Ooxoyo, Fig. 13.15).
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The direction of the local radius of the Earth is taken as Oz axis, the Ox axis is
pointing towards west, tangent to the local circle which is parallel to the equator
plane. The Oy axis is also tangent to Earth’s surface and included in the N-S-O
plane, pointing south.

Neglecting the very small quantities discussed above, the Rivals formula for the
acceleration of point O of the Earth becomes :

a,=a, +cx7+ox(DxF)=ox(DxF) (13.137)
The position vector of the point O is 7 = Rk in which R=6376.5 km is the mean

radius of the Earth. The components of the transport acceleration are projected on
this frame. Consequently the projections of the angular velocity of the Earth

(|| =%= 72.722-10"rad /s ) are
@ =-wcosAj +wsin Ak . (13.138)
The velocity of the point O is
i J k
v, =0x7=|0 —wcosA @sinA|=—wRcosAi (13.139)
0 0 R

According to (13.137), the acceleration of the origin O of this frame is

; 7 k
a,=a=| 0 —wcos A wsinA|=-w*RsinAcosAj —aw’Reos® Ak . (13.140)
—wRcos A 0 0

The pseudo-force of transport is then (Fig. 13.16)
F, = —ma, = mw’Rsin Acos 1] +mw’Rcos” Ak . (13.141)

The second projection is always positive and its effect is to reduce the local gravity
force mg, = m(—g +@’Rcos’ ﬁ)k . Since the mass is a constant, the local gravity

acceleration g; on the surface of Earth is not a constant value in every point of the
Earth’s surface:

|g:|=g - @ Rcos’ 4. (13.142)

This formula provides the law of variation of g; with respect to the latitude 4. The
maxim of g, 1S @ma=g, if 41 =290" (at the two poles of the Earth) and the
minimum of g; is g, . =g — Re’ (at equator for A =0"). The difference between
the maximum and minimum values is

Re’ =6376.5-10" -(72.722-10°° )2 =0.0337 m/ s*,which is not always negligible.
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The first projection of the pseudo-force of transport is a horizontal component
pointing towards the equator. A heavy particle hanging by a string attached to a
fixed point included in the local Oz axis, is supposed to indicate the direction
towards the Earth’s center, but the hanging string will not lie on this axis (Fig.
13.16).

The deviation angle y measured between the local radius direction (Oz) and the
local weight vector G, is

mRw’ sinlcosA _ Rw’

tany = sin2A. (13.143)

mg —mRw’ cos’ A 2g
This angle has a maximum value for a latitude of 45°, for which

6376.5-10° -(72.722-10°° )2
tany_ = =0.001719 = y__ =5'55"

2-9.807

Fig. 13.16 Earth’s rotation influence on a hanging heavy particle

13.10.2. Motion of a particle on Earth’s surface

Two principal cases of motions will be considered: vertically falling particle and
horizontally moving particle. In order to simplify the discussion, in both cases the
instantaneous value of the velocity is v.

a) If a particle moves at a given moment with a velocity relative to Earth’s
surface v, =—vk , then a Coriolis acceleration can be determined:
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i Jj k
a =2oxv.=2|0 —wcosd wsinA|=2wvcosAi (13.144)
0 0 -V
The Coriolis pseudo-force of inertia is then
F. =-ma, =-2meavcos Ai (13.145)
Since the axis Ox is orientated towards west, a heavy particle does not fall along

the local vertical indicated by G,, but is deviated towards east.

b) A heavy particle of mass m has an instantaneous relative velocity
V. =vcosai +vsinaj in the local horizontal plane. The angle a is arbitrary.

Fig. 13.17 Motion deviation of a horizontally moving particle

The Coriolis acceleration is in this case

i Jj k
a, =2oxv. =2 0 —wcosA wsind
) (13.146)
vcosa  vsino 0

= 2(—wvsinasin Ai +wvcosasin A j + wvcosa cos /1k)

and the corresponding pseudo-force of inertia is :

F =-ma, = 2ma)v(sinasin/17—cosasin/17—cosacos/ll;) (13.147)
The most important effect of the Coriolis pseudo-force is in the plane Oxy, which
is the wvector containing only the first two components from (13.147)
F, = Zma)v(sin ai —cos a]_')sinxl. Being perpendicular by definition on the

velocity vector, it can be easily proven its orientation to the “right” of the velocity
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if 2>0 and to the left in the other case. This effect is a motion deviation to the
right in the northern hemisphere of the Earth and a deviation to the left in the
southern hemisphere.

13.10.3. Foucault's Pendulum

Faucault's pendulum consists of a material point M of mass m attached at one
end of a string of negligible weight and length /. The other end of the string is fixed
to a point of coordinates A(0, 0, /) in the local frame presented in the above
paragraphs. In these conditions, the material point is resting at equilibrium in the
origin O, neglecting string deviation from the Oz axis.

Z A

Fig. 13.18 Forces on the pendulum of Foucault

If T is the tension in the string, the force applied on the particle can be cast into

— MA . —xi—y+(I-2)k
vector form as T =T ALA =T . ( Z) . Including the weight, the
MA !
components of the applied forces are
_ _ | —
X:TxT; Y:TyT; Zz(l—Z)T—mg (13.148)

If the particle moves with a relative velocity v, =xi + yj +zk the Coriolis
acceleration becomes

i 7 k
a =2oxv, =2|0 —wcosdA wsind
. : : (13.149)
X y z
= 2a)[—(z'cos/1 +ysind)i +xsindj + )'ccosﬂ,l;]
The Coriolis pseudo-force of inertia is :
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F, = -ma, =2mo| (2cos A+ ysin )7 —isin 4] —kcos Ak | (13.150)
The differential equations of the relative motion are:

mx = —T§+ 2mo(zcos A+ ysin )

myz—T%—2ma)XSin/1 (13.151)

. (1-2) :
mz :TT—mg—2ma)xcos/1

If the motion of the particle is close to the origin, its vertical motion can be
neglected, so that z =0; z=0. Moreover, the tension in the string will be assumed
to be a constant value 7 =mg. The first two equations form (13.151) are
simplified

)'5—2a)ysin/1+g§=0
(13.152)
j}+2a))'csin/1+g%: 0
Introducing z =x+iy with i= J=1, the sum of the first equation with the second
one multiplied by i, yields

'z'+2(ia)sin/1)z'+pzz:o. (13.153)

with the notation p* = %

The homogeneous differential equation (13.153) has the characteristic equation
7* +2(iwsin 1)y + p* =0 and the complex roots

V., =—imsin A +i\Jw’ sin®> A + p* .

The angular velocity of the Earth is small and its square can be neglected if
compared to p”. In this way the general solution of (13.153) can be expressed as

z=e "M (Ce" + Cre ™). (13.154)

The sum of the complex numbers in the parenthesis C,e” +C,e™™, has an

interesting graphic representation (Fig. 13.19). A phasor is a rotating vector of
modulus C; and angle pr with the Ox axis. Similarly another one of modulus C,
makes an angle (phase) —p¢ with the same axis.

Their scalars are constant, but the angle between them uniformly increases in time.
Their sum can be obtained according to vector summation rule and a point is thus
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found on an ellipse of major axis C;+C, and minor axis C;-C,. This ellipse is the
general solution corresponding to C,e” +C,e™ .

y= south

Fig. 13.19 Elliptic motion in the Oxy plane in the absence of Earth’s rotation

Now, including the factor e*"*, the phasors have the same scalars, but their
phases are shifted by the same monotonic increasing angle w¢sin 4.

The general solution can be interpreted as a motion on an instantaneous elliptic
motion, but on a uniformly rotating ellipse.

The period of this rotation at a latitude A=45° is:

r=_2% _ 2T 1221885 = 33 94hours
wsind  72.722-10°sin45
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Example.

7z A pendulum of length /=200m is left to swing
freely from a position which is at west from the
attachment point. The initial angle is 6=10°
between the string and the local vertical
direction (Fig. 13.20).

Determine and plot the path of the
material point attached, as a projection on the
horizontal Oxy plane (Ox pointing west).

Fig. 13.20 A pendulum at Earth’s surface

From eq. (13.154): z =¢ ™" (Clei"’ +Ce™ ) it can be deduced the projections of
the motion on the two axes:

x=Re(z)=C, cos(p—wsind)t+C,cos(p+wsin )t

y=Im(z)=C sin(p—-wsini)i—C,sin(p+wsin )t
x=-C/(p-wsind)sin(p—-wsind)t-C,(p+wsinA)sin(p+wsin )t
y=C,(p-wsind)cos(p-wsini)i—C,(p+wsind)cos(p+wsin )t

The initial conditions can be expressed as:

t=0={x=Isinf; x=0; y=0;, y=0}

Using the numerical values, p = \/% =, /% =0.22144rad /s, or an oscillation

period of T = 2z =28.374s.

P
C +C,=Isinf=3473m
It follows { C,  p+wsind  0.22145+72.722-10sin45’
C, p-wsinA 0.22145-72.722-10 sin45’
With sufficient approximation C, =C, =17.365m

Consequently
x=17.365c0s0.22139¢ +17.365¢c0s0.22149¢

y=17.365sin0.22139¢ —17.365s1n 0.22149¢

=1.000464

The result is difficult to plot. In fact the pendulum makes 4306 oscillations for a
complete rotation of the oscillation plane. A simplified plot with 20010 points
equally spaced in time during half a rotation period is presented in Fig. 13.21. The
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general pattern corresponds however to the much denser trace of the effective
motion.

v

Fig. 13.21 A subset of points on the path of a Foucault pendulum
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14. DYNAMICS OF A SYSTEM OF MATERIAL POINTS

14.1. Preliminaries

A system of material points A; of masses m; (i =1,...,n) is considered. The
fundamental equation of dynamics for all the material points belonging to this
system forms the following system of differential equations:

ma, =F, + Z s (14.1)

where F are external forces (Active and reaction forces originating from bodies
and material points not belonging to the system) and F:, are the internal forces

(Forces of interaction between points i and j of the considered system, using the
logical convention F, =0as a particle cannot exert a force on itself). Internal
forces occur in pairs and obey to the law of action and reaction. Consequently, the
sum and the total moment of a pair of internal forces F:] and F‘” are zero

F =0
(F+F_

J‘nl

(14.2)

xF.=0

Jt

) FZXF;+I’;XF =7 x

1

:fjl

1

It follows that the resultant vector and the resultant moment of internal forces are
also zero:

S F =0
ij
o (14.3)
7 X F;j =0
i=l j=1
Zy _ _
Vi m: Fi
o _
b, & FJ
_ Fi
I ] F; "
I (] !
0 y

Fig. 14.1 Forces on two material points from a system of material points
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Dynamic quantities such as linear momentum, angular momentum, kinetic energy,
defined for a material point, can also be defined by a natural generalization to a
system of material points.

The linear momentum of a material point of mass m, moving with a velocity v was

defined as 4 =mv . It is natural to define the linear momentum of a system of
material points:

H=>Ymy, (14.4)
i=1

The angular momentum of a material point about a fixed point O was defined
byK, =7 xmv . It is natural to define the angular momentum for a system of
material points by:

Ky => 7 xmy,. (14.5)
i=1

o . : 1 :
The kinetic energy of a material point was defined by 7 = Emvz. It is natural to

define the kinetic energy for a system of material points by:
def 1 n )
T:Eva. . (14.6)

i
i=1

The elementary work of a force was defined by dW = Fdr. The external
elementary work dW, and the internal elementary work dW, for the forces
acting on a system of material points are consequently defined:

dw,., difﬁﬁ-d?i; aw,, difﬁiﬁ;d% . (14.7)
i=1

i=1 j=1

The implicit convention F,d7; = 0 has been used in the summation.

If the force field is a conservative one, then a force function U and a potential
energy V can be defined for force acting on a material point:

(14.8)

If forces of different natures are applied on the system then there are at most n
force functions or potential energy expressions:

Uext = ZUI’ Uint = ZU;'/‘
Vext:ZV;; Vint:ZVij
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in which U; and V; are respectively the force function and the potential energy
corresponding to a certain external force F: andU, V., are the force function and

o i

potential energy corresponding to a certain pair of internal force Fy andF ;.

14.2. Theorem of linear momentum. Motion of the mass center

The derivative with respect to time ¢ of the linear momentum H ofa system of
material points is equal to the resultant force vector of the external forces:

—_iﬁ. (14.10)

Proof.
Adding the differential equations (14.1), for all the system of particles it results

Zma —ZF +ZZ ZF (14.11)

It has been used (14.3) to cancel the double sum of internal forces. The left side
expression can be written successively:

Zma “S o Dy _d s oA (14.12)
i=1 dt i=l1 dt dtl =1

and the theorem is thus proved.

Theorem of the mass center motion

The linear momentum H = Zml.v . can be written successively:

(14.13)

ByM = Zmi is the mass of the system, ,;is the position vector of the mass center
i=1

of the system and Ve is the velocity of the mass center C of the system of material

points. If the momentum His replaced by its expression (14.13) in relation (14.10)
it follows that:

Ma.=)YFi. (14.14)
i=1

The center of mass of a system of material points has the same motion (path,
velocity, acceleration) as a material point having its mass equal to the mass of the
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system and subjected to the action of a force equal with the resultant vector of the
external forces.
Consequently, if the resultant vector of external forces is null (in particular, if the

external forces are all null: F; = 0), then the linear momentum H is a constant.
This theorem is called the conservation law of the linear momentum.

In these conditions, the mass center of a system of material points is at rest or has a
uniform rectilinear motion.

Another interesting aspect is if the resultant vector of external forces is not null,
and internal forces are considered, then the mass center of the system of material
points, continues the initial motion, even if the particles change their individual
motion.

For example, if a shell is exploding in the air its splinters shall have such motions
that the center of mass of the system of splinters continues its parabolic path (if the
drag force of the air is negligible).

Example. Rebound of a gun.

The system formed by the gun and the bullet is initially at rest. Only internal forces
intervene during the firing process. If M is the mass of the gun, m is the mass of the
bullet and u is the relative velocity of the bullet relative to the gun, it is to be
determined the rebound velocity of the gun.

|

Fig. 14.2 Rebound of a rifle or a gun

If v is the rebound velocity of the gun assumed to be in the positive Ox direction,
the absolute velocity of the bullet is v +u . Since the gun and the bullet are initially
at rest, the linear momentum H = (. Because no external forces intervene, the
linear momentum is constant. It follows that:

mv
M +m

The minus sign corresponds to the well-known phenomenon of rebound of a gun
which corresponds to the vector drawn in Fig. 14.2.

Mv+m(v+u):O = v=- u. (14.15)
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14.3. Theorem of angular momentum. Koenig’s theorem. The theorem
of angular momentum for a translating central frame

14.3.1. Theorem of angular momentum

The derivative with respect to time of the angular momentum K, of a system of

material points about a fixed point O is equal to the resultant moment of external
forces about a same fixed point O:

dKe =>"rixFi. (14.16)
I

Proof

Multiplying the differential equations (14.1) by ri and adding these equations, it
follows

Y Exma =Y FxF+ mxF, . (14.17)

By virtue of (14. 3) E X Fy 0. The left side can be written successively:

no_ _ n _ " dr:

1
E rixXma; = E l";‘XWl.—— E (VixmiVi>_ —Xmvi =
i=1 i=1 dt o dt

_ (14.18)
d (& _ dKo
= Zrz‘xmivi =
dt\ 5 dt

dri - . - - :
because 7’; =v; and obviouslyv; x m,v; = 0. The theorem is thus proofed.

14.3.2. Koenig’s theorem for the angular momentum
Two frames are considered:
e a fixed Cartesian frame Oxyz and
e a moving Cartesian frame Cx'y’z’ of origin C (the mass center of the system

of material points) with axes remaining parallel to the axes of the fixed
frame. This is called a central frame.
The position vector of a certain material point m; about the fixed and respectively

the moving frame are 7,7 . p is the position vector of the mass center C about
fixed frame. It follows that:
F=p+T (14.19)

Differentiating this relation with respect to the time, it can be obtained:
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Vi Z, Fi

T C

X

Fig. 14.3 System of material points in a moving central frame

!

V=V, 4V, . (14.20)
The angular momentum about the fixed point O can be written successively:
Ky =7 xmv :Z(E+Fi')xmi (v +77)
i=1 i=1
=D PXm+ D PXMV + Y XmV + Y T xm, (14.21)

from which
K,=pxMv.+K,. (14.22)

The relation is known as Koenig’s theorem for the angular momentum: the
angular momentum of a system of material points about a fixed point O is equal to
the sum of the angular momentum of a single material point placed at the center of
mass but having a mass equal to the whole mass of the system, and the angular
momentum of the system of material points in their relative motion about the
center of mass.

In the proof use was made of the facts: mel' =0 (The static moment about the

i=1

mass center is null. See Chapter 3), Zmi\_/i =%(Zmi;i j:Osince there is no

frame rotation.
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14.3.3. The theorem of angular momentum in a translating central
frame

The theorem of angular momentum has the same form for the relative motion of a
system of material points about its translating central frame.

Proof

Replacing K, by its expression ((14.22) Koenig theorem) and the position vector
by its expression (14.19) in the angular momentum theorem (14.16), the following
expression is obtained

n

%(mMVCH?C):Z(,mﬁ)xE (14.23)
i=1

Developing the vector calculus

= IZ n n ., _

d_pxmc+,5xM@+d ¢ —pxYF+Y 7 xF. (14.24)
dt dt dt p ot

Ses

. d - - - dv, &= .
Since L2 x Mvc =v xMvc=0and M % =Ma, = ZE (theorem of linear
i=1

dt
momentum using the mass center). After reduction of terms, the theorem becomes
K, & =
dc :Z’?‘ X F. (14.25)
t i=1

The validity of the theorem of the angular momentum for the relative motion of a
system of material points about its center of mass is thus proved.

Example
Two material points of masses m rotate in the plane Cy’z” around the Cx’ axis by

the angle ¢(z)and their distances to the Cx’ axis are both /. The mass center C
moves with constant velocity v.along the Cx’ axis. The Cx’y’z’ frame remains
with axes parallel to those of the fixed frame Oxyz during motion.

y o(1)

Fig. 14.4 Two material points moving in a translating frame

. Assuming only gravitational forces, write the angular momentum about O and
apply the theorem of angular momentum for the system of two material points.
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The coordinates of the two material points are (xl’ =0; y =lcos¢; z/ =Isin (p) and

(x; =0; y, =—lcos@; z, =—Ising)velocities of the two material points relative to
the central frame are:

A Pk
v=lp 0 0|=Ip(-sing) +cospk’); V,=|¢p 0 0|=Ip(sing;" —cospk’).

<

! !

X »n oz X, ¥
According to (14.22): px Mv, =(x.i +hj )x2mv.i =—2mhv k and
F i i
K.=mlp|0 lcosp Ising|+mlp|0 —lcosp —lcose|=2ml’pi’
0 —sing cosg 0 sing —cos@
The moments of the two weight forces are:
77k i~
M (G)=\x ¥ z|=mglcospi’; M.(G,)=|x; ¥, z}|=-mglcosei
0 0 mg 0 0 mg
Using the theorem of angular momentum (14.25) it follows:
dftc = 2ml*@i’ = mgl cos i’ —mglcos @i’ =0, so that $ =0

which proves that this helical motion takes place with constant angular velocity.

14.4. Theorem of kinetic energy and work. Koenig’s theorem. The
validity of the theorem of kinetic energy and work in a translating
central frame

14.4.1. Theorem of kinetic energy and work

The differential of the kinetic energy of a system of material points is equal to the
sum of the elementary external and internal work:

dT =dW _, +dW,

ext int

(14.26)

Proof

Multiplying the differential equations (14.1) by dr: and afterwards adding these
equations, one gets

Zn:mia" dri :iﬁfd;i +Zn:Zn:Fﬁd;i - (14.27)
i=l i=1 i=1 j=I

According to the definitions of external and respectively internal work are

dw,, = Zfid riy d W, = Z ngd r: and for the left side of the theorem
i=1

i=1 j=1
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- )
> mai-dri = m[%.d?,- = mvi-dv :Zmid(%] :d(Z%mivfj:dT (14.28)

The theorem is thus proved. It can be remarked that this theorem does not
eliminate the internal forces because in general W, # 0. However, there are some

cases whendW.

nt

=0. Considering only two material points from the system, the
expression:

szd;l +fﬂd7_’j :Fljd;l —Fyd;J IFU (\_/l —\_/j)dt :Fy;ydt (14.29)

This expression is zero in one of the following cases:
a) The system of material points is a rigid system or rigid body, because F';j L v;.

Explanation comes from the constant distance between points: ‘M M f‘ =const.

and consequently one point M; moves on a sphere centered at M, .

b) There are only smooth constraints, because Fi i L.
For a smooth surface constraining the system, the relative VelOCity;ij 1s situated
in the tangent plane and F; is normal to the surface of contact. If the constraint
is a hinge, which can be modeled as a fixed point of a rigid body, hence the

velocity v; = 01n the application point of the reaction forces.

c) There are rough constraints and the relative motion is a rolling motion (without
sliding).
The explanation comes from \_/,j =0 (the point of contact is an instantaneous

center of rotation).
d) The system has two points connected by inextensible strings.

In this case Fy L vy if the string is stretched (as in case of a rigid system) and

Fy =0 if the string is loosed.

14.4.2. Koenig’s theorem for kinetic energy and work

The same mechanical system and frames are considered, as indicated in Fig. 14.3
and the relations (14.20) and (14.26) are considered. The kinetic energy about the
fixed frame Oxyz can be written successively:

T:i%mif =i%ml. (VC +V) )2 =Z my; +Z my' +gml.\7c\7'

i=1 i=1 i=1
1 n ) n 1 ) n
=— th vC+Z—m,.17' +chm[\7
A o 2 i=1

The last term is null as the derivative of a static moment determined about the mass
center, so that the theorem becomes

(14.30)

T:%Mvé+TC. (14.31)
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This formula is known as Koenig’s theorem for the kinetic energy: “The kinetic
energy of a system of material points in a fixed frame equals the sum of the kinetic
energy of a single material point placed at the mass center but having a mass equal
to the mass of the system and the kinetic energy of the system in its relative motion
about the mass center”.

The elementary external work can be written

dVVm = Zfld;l = ZF;d(ﬁ%-Fl,) :dﬁZFz + Zﬁid’?,
i=1 ) i=1 i=1 i=1 (14.32)
=dp) Fi+dW,,,
i=1

which represents a sum of two elementary works: one of the applied forces with
the elementary displacement of the mass center and the other is an elementary
work of applied forces with the relative displacements of points about the

translating central system. The internal elementary work :

n

Wi djiiﬁf";f = Ziﬁzd(ﬁ+ﬁ) —dpY Y Fy +3 Y Fydr

i=1 j=I i=1 j=1 i=1 j=1 i=1 j=1 (14.33)

n n

= ZZFUdﬁ = dVVintC

i=l j=1

1s the same in the fixed and the translating central frame.

14.4.3. Theorem of energy and work in a translating central frame

This theorem states that the theorem of kinetic energy and work has the same form
for the relative motion of a system of material points about a translating central
frame:

dT. =dW,

extC

+dW.

intC *

(14.34)

Proof
Replacing the kinetic energy T by its expression (14.31) and 7 by its expression in

the translating frame, the position vector (14.19) in the proven theorem (14.26),
one gets

+dW.

d(%Mvé +TCJ =dpy Fi+dW, . (14.35)

extC
i=1
. | dp - dp _ - (& s),=
Since: d EMVC =M\7Cd_C=MEdvc=MEacdt=Ma—cdp= F |dp,
i=1

the last expression simplifies to

d(T.)=dw,

extC

+dW.

intC *

(14.36)

which proves the theorem.
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15. DYNAMICS OF A RIGID BODY

15.1. Dynamic quantities for a rigid body

Since a rigid body is continuous, the sums appearing in the previous chapter,
concerning the definitions of the linear momentum, the angular momentum and the
kinetic energy must be replaced by integrals. The following are the expressions for
linear, angular momentum and kinetic energy for a rigid body:

H = [vdm = Mv,; K, =[7xvdm; T:%J.vzdm (15.1)
D D D

The integrals are defined on the three dimensional domain (D) occupied by the
rigid body, M is its mass and Vv, is the velocity of its mass center. These

expressions have specific forms for particular motions of a rigid body:

a) Translation:

H=Mv;
_(,ZJFXVCdm:(J.dejX‘Z:MIBX_CZIEXMVC (15.2)
D D
1 1 1
T=J.—vfdm =—va.dm=—Mvc2
52 23 2

It follows that the linear momentum, the angular momentum and the kinetic energy
are equal to those of a material point placed at the center of mass and having a
mass equal to the mass of the rigid body (M). The usual notations have been used:
p; v are the mass center position vector and respectively velocity.

b) Motion of a rigid body with a fixed point:
The general formula for the linear momentum remains the same

H =My, (15.3)

in which v, =@ x p.
The velocity for an arbitrary point of rigid body in this case of motionis v =@ x7 .
Consequently the angular momentum can be written:

IZO:IFX(éxF)dmz
S (15.4)
:j(xi +yj +zk)><((a)xi tw,j +a)zk)><(xi +yj +zk))dm.
D
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The  double cross product can  be  developed using  the
formulaa x(l_) xE) =(a-c)b —(Zz -B)E , yielding:

K, z'[[(x7+y]_'+zl;)2(a)xlT+a)y7+a)zl€)—(a)xx+a)yy+a)zz)(x7+y]_'+zl;)}dm

D
_Jz
D
=1

[(x +5 +22)(a)x?+a)yf+a)zl;)—(a)xx+a)yy+a)zz)(x7+y]_'+zl;)]dm
(15.5)
(6 +2)o, 20, Jam [[(= + ), 1702 e o

D
+k j [(x2 +5 ) o, — 2X0, - 2y, ] dm.
D

By identification of the moments and products of inertia expressions, the last
formula can be shorter written:

K, = (Jxa)x -J,, —sza)z)zT
+(~J 0, +J 0, - 0.)], (15.6)

+ (—sza)x —-J 0, +J. 0. )k

in which J,, J,, J. are the moments of inertia and J, J,. , J-, are the products of
inertia of the rigid body with respect to the Ox, Oy and Oz axes (see chapter 4).
The kinetic energy can be obtained in this case:

1, _
T:ig(wxr)zdmz

:% _(wx7+a)yj_'+a)zl€)x(x7+yj_'+zl?)]2 dm =

JL

_ 15.7
:%D_(a)yz—wzy)7+(wzx—wxz)7+(a)xy—wyx)lz]z dm (1>7

1 s (y2 Jrzz)Jra)j(z2 +x2)+a)22 <x2 +y2) n
29 | 20,0,xy —20,0,yz = 20,0 2X

Again identifying the moments of inertia and products of inertia, the kinetic energy
expression becomes:

T= ;(Ja) +Ja)+Ja)—2J oo, —J oo Ja)a)). (15.8)

xy Cxy Xy Tz zx 7z 0%

The expressions of the angular momentum and kinetic energy can be written in a
compact matrix form as:

(Ki=llloh =0} 4]0} (15.9)
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where [Jo] is the square matrix of the moments of inertia (called inertia matrix)
and {w} and {Ko} are the column matrices of angular velocity and angular
momentum respectively:

JX _ny _JXZ a)x Kx
[So]=|-T I, I (o} =|a, |; (K.} =| K, |(15.10)
-J. -J, J. o, K.

c) Rotation about an axis
The Oz axis is placed along the rotation axis. The angular velocity components are
o =0, 0,=0; 0 =0.

The following formulas are obtained as particular case of the previous case

H=Mv;

c

K,=-J oi -J oj+J ok . (15.11)

T:lJza)2
2

d) The general motion of a rigid body
Applying Koenig's theorems it follows that:

H = My,;
K,=pxMv +K_, (15.12)
T:lMﬁ+z

2

in which K and T, have the expressions (15.6) and (15.8) deduced for a rigid

body with a fixed point. The origin of the translating frame is at the mass center C,
because the relative motion of a rigid body about its mass center can be seen as a
motion of a rigid body around a fixed point C.

15.2. Rigid body in rotation about a fixed axis

A rigid body having two distinct fixed points (smooth spherical joints) O; and O,
(fig. 15.1) acted by the given forces F,(i =1,..,n) is rotating about the fixed axis
0,0,. A fixed Cartesian frame O,x;y;z; is considered, so that O,z; is the rotation
axis. Another movable Cartesian frame Oxyz, is assumed attached to the body, with
Oz as the rotation axis (O=0;) and the Oxz - plane such that the mass center
C(£,0,¢)of the rigid body is situated in it.
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Fig. 15.1 Rigid body in rotation about the Oz axis

The distance between the fixed points is denoted 2 = O,0,, the rotation angle 0 is
measured between mobile Ox and fixed Ox; axes and X, Y, Z, Mox, Moy, Moz are
the projections of the resultant force vector and respectively the resultant moment

vector of the given applied forces F, on the axes of the moving frame Oxyz. If the

two spherical joints are replaced by the reactions R, (Rlx R, R1Z) and
R,(R,,.R,,.R,.), the velocity of the mass center is
v, =% p =k x(E +¢k )=o), (15.13)
then the expressions of dynamic quantities become:
H=Mv,=Méawj
‘ “0] (15.14)

Ky=—J oi —J wj+J ok

The theorems of linear and angular momentum yield in this case:

A oH _ - _ - -

i{—t:aa—t+5)xH:M§a')j+a)k><M§a)j:—Mfa)zi+M§5j
=R+R +R,

dK, 0K, _ - - =

dto =a—t°+a)xK:—sza)i ~J,.0) +J .ok + (15.15)

+ok x (—sza)zT —J, o) + Jza)/;) = (—szg +J,0° )7 +
+(—Jyzg —sza)z)7+Jzel; =M, +0,0, xR,
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Projecting these equations on the moving frame axes, it follows
~Méw® =X +R, +R,,
M&e=Y+R, +R,,
0=Z+R_+R,,
~Je+J, 0" =M, —hR,

2

—-J.e-J. 0" =M, +hR,,
Je=M,_

(15.16)

The theorem of energy and work dE = dW.,\, since dW;,; =0 as the mechanical
system is a rigid one, can be written:

dT = d(%]za)zj =J. odw,

dW,, =Y Fdi; =Y Fvdi =Y F (@x7)dt =@y, (7 % F, )
i=1 i=1 i=1 i=1

(15.17)
= ok -(M, 7 +M,j+M,k)dt =M, odt=M,do
AT =aW. = J odo=M _do=J 0% -m 49
dt dt
do do T : : :
But 7 = E’Z = w and simplifying by @ # 0, is found again the last relation from

(15.16). The system of differential equations (15.16) completely determines the
motion of the rigid body, by integrating the last equation:

Je=M, (15.18)

To be remarked the similarity of this differential equation to the fundamental

equation of dynamics Ma = F'.
From the remaining five equations it is possible to determine the projections of the
reaction forces Ry, Riy, Rax, Roy :

R,=-Méwp’ - X +(J e+J. 0 + M, )/ h
R,=Mée-Y—(J.e—J. & +M,)/h
)/

R, =(J.e-J 0 +M,) h

(15.19)
R, =(-J.e-J.0'M

oy

The projections on the Oz axis R;, and R, are indeterminable, because there is a
single equation (the third) with two unknowns. The conclusion is that two spherical
joints are not necessary to immobilize the axis of rotation. For example, if O,
would be a hinge and O, a spherical joint, the axis O,0, remains fixed and R,, =0.
Therefore R, =-Z; R,. =0.
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Application
An important practical application is rotor balance. A rotor is a rigid body of axial

symmetry about the Oz axis. The perfect symmetry cannot be technologically
obtained, but the mechanical conditions for such case are required in this
application.

R:)
and R (fo,Rfy,sz ) These static reactions are the solutions of the following system

SRS

1xo My

The reactions of the rotor in the initial state of rest are R} (R

of equations, obtained from (15.16) for @ =0:
0=X-R’+R
0=Y+R, +R),
0=Z+R +R), (15.20)
0=M, —hR;,
0=M, +hR5,
Subtracting the equations (15.20) from (15.16) and denoting by R/ =R —R’®
andR! = R, — R the dynamic reactions, the equations of motion become:
~-MEw® =R + RS,
Més =R +R],
0=R’+R{ . (15.21)
~J e+J, 0 =—hR],
~J,&e—J 0" =R,
If the angular velocity o increases, these dynamic reactions increase very fast as

they are proportional to w? It is important to have null dynamic reactions for a
rotating rotor @ # Oand ¢ # 0. The following conditions have to be fulfilled:

~Méw® =0
Mée=0
—Je+J,0" =0

—J,.€— J o =0

(15.22)

The first two conditions are verified if:
=0, (15.23)

meaning that the mass center must be situated on the rotation axis. If this condition
applies, the rotor is said to be statically balanced.

198



The last two conditions can be considered a homogeneous system of linear
equations in the unknowns € and ®. Non zero solutions are possible if and only if

the determinant A =J_ +J is equal to zero.
It follows that:

J.=0; J, =0, (15.24)

meaning that the rotation axis must be a principal axis of inertia. This is the
requirement for rotor to be statically and dynamically balanced. In Fig. 15.2 there
are three examples of rotors: the (a) rotor shown is unbalanced, the (b) rotor shown
is statically balanced and the (c) rotor shown is statically and dynamically
balanced.

G i G: iG
b) C)

a)

Fig. 15.2 A rotor can be unbalanced (a), statically balanced (b) or dynamically balanced (c)

15.3. Motion of a rigid body with a fixed point

A rigid body has a fixed point O which is the origin of a fixed Cartesian frame
O:x1y1z1, and another Cartesian frame Oxyz attached to the rigid body (Ox, Oy, Oz
are the principal axes of inertia) and O; = O (Fig. 15.3).

Z1 4

Fig. 15.3 Motion of a rigid body with a fixed point
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15.3.1. The Euler angles

In some applications, the Euler angles are used to simplify the differential
equations forms. Three independent rotations can be chosen:

a) A rotation of angle y (angle of precession) or 1/'/1;1, of frame (1) around fixed

Oz, axis generates frame (2) (Fig. 15.4 a). The rotation of the new frame can be
expressed using matrix [R1] as:

i cosy siny 0] i t i
Jo |=| ~siny cosy 0|7 |=[R]| (15.25)
k o 0 1|k i

[\S]

b) A rotation of angle 0 (angle of nutation) or HZ, of frame (2) around the fixed

axis ON (line of nodes) generates frame (3) (Fig. 15.4 b). The rotation of the
new frame can be expressed using matrix [R2] as:

10 o Iz]
=|0 cosd sind || j, |=[R,]
0 —sin@ cosé ||k,

(15.26)

S Sl sl

[\S]

S Sl s

c) A rotation of angle ¢ (angle of local rotation) or gbl;3 around Oz; axis (Fig.

15.4 c) generates the frame attached to the rigid body. The rotation of the new
frame can be expressed using matrix [R3] as:

i cosp sing O] i t i
J |=|-sing cosp O] j; |=[R] /s (15.27)
k 0 0 1|k k.

w
w

Fig. 15.4 Rotations defined by the Euler angles
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For example the above angular velocities are projected on the last frame as:

_a)w 0 y sin@sin @
=[R,][R,][R ]| 0 |=|wsinOcosg

@, 7 w cos @
o, | 0| | Ocosh

o, |=[R][R,]| 0 |=|-Osing (15.28)
| @,. | 0 0

- 0 0

a)(ﬂy :[R3] 0=
| D, | ¢ Lo

It follows that the angular velocities y,6,¢ corresponding to these rotations have

respectively the directions of O,z;, ON and Ojz; (Fig. 15.4). The expressions of the
projections of the angular velocity on the axes of movable frame w., v, and w. are
the sums of the components obtained above:

o, =y sin@sinp + Ocos

o, =y sin@cos@ —Osing (15.29)
@, =ycosf+¢
The projections of the Euler rotations on the fixed frame are
o, 0] [o
o, |= [Rl]T 0|=|0
[ Py = v
. 9] Ocosy
@y, | = R 0 9s1n1,// (15.30)
Koy 0
_a)lw @sin@siny
@, =[R][R] [R3] =| —gsinfcosy
@y, @ @cosf
Consequently the angular velocity projections on the fixed frame are:
= ¢sin@siny + Ocosy
o, = —gsin@cosy + Osiny (15.31)
=y +@cosl
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15.3.2. Dynamics of the rigid body with a fixed point
Denote by F, (i =1,...,n) the external forces acting on the rigid body, by R and M,

the resultant force vector and the resultant moment vector of these forces, and by
R the reaction in the fixed point O (a smooth spherical joint). The theorems of
linear momentum, angular momentum about the fixed point O and respectively the
theorem of energy and work are:
dH - = dK
— =R+R; 0
dt dt
The motion of the rigid body is defined by the theorem of angular momentum. The
angular momentum, its derivative and the resultant moment vector are:

=M,, dE=dWw. (15.32)

K, =Joi+J,0,j +J0.k;

ﬁ = % +oxK
dt o
=J o0 +J,0, +Js0ok +(07 +0,] +0.k)x(Joi +J,0,j+J0k)= (15.33)

= (S, +(Jy =) 0,0, )T + (o0, +(J, = 1, ) 0.0,) ] + (s, +(J, =, ) w,0, )
M,=M,i+M,j+M_k;

The theorem of angular momentum gives us the following equations:
Jio, +(J;—J,) 0,0, =M,
Jyo, +(J, - Jy) o0, =M
Jyo, +(J, - J,)) o0, =M

(15.34)

oy
oz

These equations are called Euler's equations. The equations (15.29) and (15.34)
represent a system of six first order differential equations with six unknown
functions (), o, (¢), ®. (1), ¢(t), w(), 8(¢). Note that M, M,, M, can

y z
depend of v, ¢, 6 and ¢. There are three cases in which these differential equations
can be analytically integrated for any initial conditions.

15.3.3. The Euler — Poinsot case
If M, =0, M,, =0, M, =0 (arigid body with a fixed point having no applied
forces, or a heavy rigid body with a fixed point at its center of gravity), the
equations (15.34) become:

o, +(J; = J,) 0,0, =0

z

o, +(J, - J;) o0, =0. (15.35)

Jyo, +(J, —J)) w0, =0
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Multiplying these equations by @, (7)., (t),®. () respectively and adding the

y z
obtained equations, it follows:

Joo, +J,00 +J,0.0. =0. (15.36)
Integrating this last equation, it can be obtained:
! +J,0] + J,0) =2T (15.37)
where T is a positive constant representing the energy of the rigid body.

Z1 A

Y1

Fig. 15.5 Euler-Poinsot model of rigid body with a fixed point

Multiplying now the equations (15.35) respectively by J @, J,®,, J,» and adding
the obtained equations, a second equation is obtained:
Jio.o, + 50,0, + 0.6, =0 (15.38)
Integrating this last equation, it follows:
Jio! + Jo! + Jiw! =K* (15.39)

where K7 is a positive constant (square of the modulus of the angular momentum).

The equations (15.37)and (15.39) permit to express @. and @ as functions of a)i :

a)zsz—ZTJ J,(J, )
LA A J3) (15.40)
oo 2T -k J,(J, - Jz)
AU AR AENA N

203



If the moments of inertia verify the inequality J; < J, < J; and this condition can
always be assumed, it is easy to verify that the four ratios in (15.40) are all
positive:

K> =2TJ = Ji o} + J 0] + J; ! —(J1 w; +J,0; +J3a)22)J3
=J,(J,=J,) @+ J,(J, = J,) @’ >0
27), - K’ =(J, @] + 1,0, + J,0. ) J, - J} 0] - J 0] - T30
=J,(J, =)@+ J,(J, = J,) @’ >0

(15.41)

Consequently the square roots will provide real expressions obtained by injecting
these angular velocities in the second equation from (15.35):

P/ S VAP CIa Y I B /i SEE P C/) JER PP
o Jz Jl(J1_J3) Jl(Jl_J3) g J3(J1_J3) J3(J1_J3) g .

By forcing common factors in the two parentheses, the following change of
variable proves to be useful:

J(J —J -K’
2( 1 22)0) —~dw = ZTJI—de_ (15.43)
27, - K> "N =)

The differential equation (15.42), assuming that the angular velocity increases,
such that a positive sign is selected, can be written as

%za\/(l—xz)(l—kzxz), (15.44)

by using the notations:

R 2TJ, - K> g [
J, —J, K*=2TJ,’ JJ,J,

The integral of (15.44) is:

2(K? -2T7,). (15.45)

I dx
% \/(l—xz)(l—kzxz)
The left side represents the incomplete elliptic integral of the first kind in the

Jacobi’s form. Using the substitution x =sin @, the left side if this integral becomes
the incomplete elliptic integral of the first kind in the Legendre’s form:

=a(r-1,). (15.46)

(15.47)

J- \/ sm )

with x, =sin®,, x=sin®. It is known as definition of the elliptic function sine-
amplitude sn(u), the following expression:
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do
——=u.
V1-k’sin® @
For given time ¢ and ¢, it can be obtained from tables or using a computer, the
values of the sinus amplitude for arguments at and afy, then w, can be obtanined
from (15.43). The other two angular velocities can be deduced from (15.40) and
instantaneous rotations can then be thus by deduced for any time t. Alternatively,

the differential equation (15.42) can be numerically integrated from the moment ¢,
at which the constants 7" and K are determined, to any other moment t.

sn(u)=sin® for T (15.48)

Poinsot! found in 1834 a geometrical interpretation of this motion: The inertia
ellipsoid about O rolls on a fixed plane with angular velocity proportional to the
OP segment, in which P is the tangency point between the ellipsoid and the fixed
plane.

Proof
Considering the equation of the ellipsoid of inertia at the fixed point O:

JxX*+ Lyt + Sz =C7, (15.49)
the angular velocity @ intersects the ellipsoid in a point P of coordinates:
Xo=Ao; Y, =l z, =0, (15.50)
with A a parameter which can be determined by injecting these coordinates in the
ellipsoid equation (15.49). It follows that:
C

C
A= = = const. (15.51)
\/Jla))f +J,0) +Jyw!  N2T

The coordinates of P are then
X =La) La) ; Z =La) (15.52)

0 \/ﬁxﬂyoz\/ﬁyﬂ 0 \/ﬁz’

proving the proportionality between OP vector and angular velocity.
The equation of the tangent plane at P on the ellipsoid is:

Jx,x+J,y,y+J,z,2=C?, (15.53)
or
Jox+J,0y+J0.z=CJ2T . (15.54)

The normal to this plane has components proportional toJ @,; J,,; J;@. which

represent the components of the angular momentum. Since the resultant moment

' Louis Poinsot (1777-1859) was a French mathematician and physicist. Poinsot was the
inventor of geometrical mechanics, showing how a system of forces acting on a rigid body could
be resolved into a single force and a couple
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vector is null by hypothesis, it results that the angular momentum is a constant
vector. Consequently the plane has a fixed orientation. From analytic geometry, the
distance from a fixed point P(x,,),,z,) and a plane Ax+By+Cz+D=0 1is

Axy + By, +Cz, + D
NA* + B +C?
The distance between O(0,0,0) and the tangent plane is also a constant:
2 / /
d= ¢ = CV2T = CV2r = const.(15.56)
Wi+ Iyt + Jiz JJel +Jlel + Jlet K

d =

(15.55)

Therefore the motion of a rigid body with a fixed point O, ifM, =0, can be

represented by a rolling motion on a fixed plane of its ellipsoid of inertia
determined about the fixed point O.

15.3.4. The Lagrange - Poisson case
If J;= J, and the unique force acting on the rigid body is its weight G =mg
applied at the mass center C (O, O, ) then M o has the direction of the line of
nodes ON, ‘ZVI 0‘ = Mghsin @, and the projections of the applied moment on the
axes of the moving frame Oxyz are (Fig. 15.6):
M, = Mghsin@cos g
M, =-MghsinOsing. (15.57)
M, =0

0: —

VAN'Y

Fig. 15.6 Lagrange-Poisson model of rigid body with a fixed point
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The equations (15.29) and (15.34) become
@, =ysindsing+ Ocosp
@, =ysinfdcosp — Osing

@, =ycosf+¢

(15.58)
Jio, +(Jy—J,)o,o, = Mghsinfcos ¢
Jio, +(J, = J;) 0.0, =—MghsinOsin @
Jyo. =0
From the last equation it follows that
@, = @, = const. (15.59)

Multiplying the last three equations (15.58) by w«, ®,, ®, respectively, and
afterwards, adding the obtained equations, it follows:

Jo.0, +J,0,0,+J,0.0 =0Mghsing. (15.60)
The integral of this equation is:

% l(a)j+a)y2)+%J3a)f = —Mghcosf+C. (15.61)

or after injecting the angular velocity components on the Ox and Oy axes from
(15.58):

J, (47 sin® 0+ 6% ) + J 0! =-2Mghcos 0+ 2C. (15.62)

The angular momentum about the fixed axis Oz, is constant because the weight is
parallel to this axis. It is first necessary to project the angular momentum on the
fixed frame Ox,y;z;:

le Jla)x
K, [=[R] [R] [R] | ), |. (15.63)
Klz J3a)z

It follows that the constant component is
K. =J (a)x sing + @, cos (p)sin 0+ J,w,cos0 =K, = const. (15.64)

Replacing the angular velocities components from (15.58), the constant component
becomes

Jysin® 0+ J,m, cos @ = K, = const. (15.65)
Equations (15.62) and (15.65) can be written as a system of equations as

0% +y’sin* 0 =a — fcosd (15.66)
wsin® @ =y —o5cosd
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with a, f, y, 0 four constants easy to identify. Eliminating  from these equations
it follows:

0* Sil’126’=((Z—ﬂCOS(9)Sin29—(7—5C0$9)2. (15.67)
By the substitution cos @ =u, this differential equation becomes:
du’) 2 Mot
(Ej ~(a— pu)(1-u )~ (y—u) = P(u). (15.68)
It follows:
dt = du : (15.69)
Jo—pu)(1-u?)~(y —6u)
or

- o
g \/(a—ﬁu)(l—uz)—(y—ﬁu)

This is an elliptical integral. It follows that u = u(?) is the inverse of this elliptical
integral, which is an elliptical function. The second equation (15.66) can be written
with the same substitution:

(15.70)

y—ou
1—u®
It is now possible to make a qualitative study of the motion. Since u=cos0, it
follows that -/ <u <+ (foru — I, and u — -1, ¥ — o if the numerator of

(15.71) is not null). The study of the sign of P(u) is summarized in the following
two tables. Two cases are possible, because P(u) >0 (the motion exists for any

v = (15.71)

time ¢, therefore also for # = 0):
Table 1

u -00 -1 Uo 1 o0

P(u) : : * : +

In the first case (Table 1) P(u) has three real roots: u; (-1, ug ), u2€(uy, +1) and
uze(1, oo ). The motion of the rigid body is possible only if ©#; <u <u,. A sphere
with its centre in the fixed point O will be considered in the following plots. The
moving axis Oz intersects the sphere in a point which describes paths which are
illustrating the investigated cases. If u;=cos6; and u,= cos8: it follows that cosf; <
cosb,, therefore 6; > @, and the motion of rigid is possible only if 6,< 6 < 6,
(Fig. 15.7).
Table 2

u -00 -1 Uo 1 o0

+

P(u) ; ; 0 .

In the second case (Table 2), there are three possibilities:
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a) u, €(—Luy), u, =uy, uy €(1,0)
b) u, =uy, u, €(uy,1), uy €(1,0)

9) Uy =uy =uUy, U e(l,oo)

6,

6,

z(m)
°
2

x(m)
Fig. 15.7 Motion with loops of the rigid body in the Lagrange- Poisson case

The path of this point is situated between two horizontal parallel circles 8 =6, and
0 =0, . In particular the path is a horizontal circle ( a “parallel”) defined by 6 =6, .
In this last case the motion is called a regular precession. Therefore the motion of
the rigid body is possible in one of the following cases:

a)only if §,<0<86, (e.g. Fig. 15.8);

b) only if 6, <0<6, (e.g. Fig. 15.9);

c) only if 6 =6, (regular precession, Fig. 15.10).

6o

yim)

Fig. 15.8 Cuspidal motion of the rigid body in the Lagrange- Poisson case
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0o

Fig. 15.9 Wavy motion of the rigid body in the Lagrange- Poisson case

By examining the relation (15.71) it follows that ¥ =0 if y—oJu=0, that is

u= % Since u =cos@ and u, <u <u, it follows that ¥ =0 if and only if

ulsgs% (15.72)

If §< u, or §> u,, then W has a constant sign. The motion of point M resemble

the motion of a reversed spherical pendulum (Fig. 15.9). If the condition (15.72) is
accomplished, then the motion of M has a path with loops (Fig. 15.7).

6o

Fig. 15.10 The regular precession motion of the rigid body in the Lagrange- Poisson case
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If gz u,, then for u = u; , the simultaneous results @=0and ¥ =0 are valid. The

motion of M has a cuspidal path (similar to Fig. 15.8).

15.3.5. The Sofia Kovalevskaya case

The following hypothesis are assumed: J; = J, = 2J3, the centre of gravity is
situated on the Ox - axis and the only force acting on the rigid body is its weight

Mg . Let a3 [, y; be the projections of the unit vector k, of the fixed axis O;z; on

the axes of the moving Cartesian frame Oxyz. The position vector of the mass
centre Cis p = &i . It follows that:

iJ ok
A7[0:ﬁng:§7ng(—a37_ﬂ37_73];):Mg§ ! 0 0 (15.73)
—0(3 _ﬂ3 _7/3 .

:Mg§(737_ﬂ31;)

Euler's equations (15.34) become, after injecting the components of the force’s
moments and the moments of inertia according to the hypothesis:

Jo, + (% —-J, ja)ya)z =0
J\o, +(J1 —%)a)za)x = Mgy, (15.74)
%a’)z = —Mgsp,
Using the notations
c= M;gi; a=ca,; P=chy; y=cy;, (15.75)

1

the last equations can be simplified to:
20, —0,0,=0
20, +0.0 =y . (15.76)
o, =—f

The second equation multiplied by i =+/~1is added to the first one, to yield a
complex expression:

2(a, +id,)=—iw, (0, +io,)+icy, (15.77)
Since O;z; is a fixed axis, then k, = const. It follows that its derivative in a moving
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frame Oxyz is null :

- i k

dk, ok, _ - - S

7tlza_t1+a)><kl:(053z+,B3]+7/3k)+a)x o, O,
Q’3 ﬂ3 ]/3

:(d3+wy7/3_a)zﬂ3)7+(ﬂ.3+a)za3 _a)x}/3>7+(73+wxﬂ3_a)yaS)];ZG

(15.78)

The direct consequence is the following system of differential equations:
ayt oy, —of=0
Bi+oa,—oy, =0 (15.79)
73tofi—oa,=0
In a similar manner, the first two equations can be cast into complex form:
&, +if, =—iw.(a, +if,) +iy, (o, +io,) (15.80)

From this equation and equation (15.77), can be eliminated y, as follows :

2, +i6, )@, +iw,) - c(a +iB) =ico. (a, +iB,) -io. (0, +i0, )

15.81
=—io, |0 +iw 2—ca+iﬂ ( :
(0, +i0,) ~c(a+ip,)|

or
2o, +id, ), +iw,) - c(a, +ip)

(a)x +ia)y)2 —c(ay +if3,)

It can be remarked that the numerator is the time derivative of the denominator.
Consequently, the last expression can be written as:

%{ln[(a)x +iw, )2 —c(ay + iﬂg)}} =—io, (15.83)

= —iw (15.82)

z

The passage to the complex form can be done again using —i instead of i, so that
the following expression will be obtained:

d Y : :
E{ln[(a)x—za)y) —c(a3—zﬁ3)}}:za)z. (15.84)
Adding the last two expressions, the result is

ln{[(a)x +ia)y)2 —c(a, + iﬁ%)}[((ox —ia)y)

2

— c(a3 —if, )}} =const. (15.85)
or

[(a) vio,) —c(a, +ip, )}[(a) —iw,) —c(a —i,@)} = const.  (15.86)
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This is the prime integral established by Sophia Kovalevskaia (1850-1891). There
are also two other prime integrals: the integral of the energy (the total energy of the
system is constant) and the prime integral of the angular momentum with respect to
the fixed axis O;z; (K.; is constant because M;. = 0, since the force Mg is parallel
to O,z)). Note that

2
a’+ B+ =c :4[2\?(’8) = const. (15.87)

Therefore, there are four prime integrals for six unknown functions
w,0,0_,a,p,y, which can be obtained by integral calculus, for any given initial

conditions.

15.4. Gyroscope
The gyroscope is an axially symmetric rigid body (J;=/J,=A4, J;=C) suspended by
two rings with mutually perpendicular axes, such that the mass center remains in a
fixed position relative to a fixed frame. It is a particular case of the Euler-Poinsot
case.
Using the Euler angles, the following six differential equations govern the motion
of the gyroscope:
@, =ysindsing + Ocos@
o, =ysinfdcosp — Osin g
@, =ycosf+¢
Ao +(C - A)a)ya)z =0
Ao, - (C-A)o.0, =0
Jyo. =0

(15.88)

From the last equation it follows @, =Q =const. Injecting this result into the

fourth and fifth equations and denoting p = C—;AQ, one gets

@+p%=0. (15.89)
o, — po, =0
By eliminating o, a second order homogeneous differential equation is obtained:
& +pw =0, (15.90)
for which, using integration constants ¢,«, the solution can be written as:
o =¢esin(pt—a). (15.91)

The other component of the angular velocity is obtained from (15.89):
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Z1 A

Fig. 15.11 The perfectly balanced gyroscope

w, =—¢ccos(pt—a). (15.92)

v

The first three equations from (15.88) can be written using the expressions for the
angular velocities as:

ysin@sing + Ocosp = sin(pt —a)
yrsin@cosp — Osinp =—¢cos(pt — ) (15.93)
wcosd+p=Q

For some initial conditions, the motion of the rigid body is a regular precession,
defined by& =06, = const. that is constant nutation angle. Supposing that these

initial conditions are accomplished, the first two equations become:

ysin @), sin@ = gsin( pt —a
‘7 o v (pt-a) . (15.94)
W sin 6, cos p =—&cos(pt —a)
Summing the squared above equations term by term, one gets:
w’sin® 6, = &* = const. = ysinf, = t¢. (15.95)

Consequently another characteristic of the precession motion is y = const.
After derivation with respect to time of both equations from (15.94), a
simplification by € and taking into account the last result, it follows:

{iqbcosw—pcos(pta) (15.96)

+@sing = psin(pt — )
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By coefficient identification it follows that only ¢ =+ pis the acceptable solution,
which means the gyroscope has a constant precession angular velocity and

p=pt—a. (15.97)
Injecting this result in the last equation (15.93), it will be obtained
wcosd,=Q—p. (15.98)

Taking the correct sign in (15.95) and dividing term by term that equation by the
terms of the last equation, one gets:

& A ¢

Q_C1—4AQ 24-CQ

tan g, =

(15.99)

Usually Q> ¢and so the nutation angle 6, is very small, which proves that for
small perturbations, the rotation axis of the gyroscope remains in the vicinity of the
initial direction of rotation. In other words, the rotations axis is stable. On the
contrary for small Q the nutation angle is large and the motion is unstable. This
property of stability was used in gyroscopes which maintain their axis of rotation
imposed at take-off, during the arbitrary motion of an airplane. In this way the pilot
is informed about the position of the airplane relative to the vertical axis at take-off
(gyro-horizon) or about the North direction at take-off (gyro-compass).

15.5. Gyroscopic effect

A perfect gyroscope must have the mass center in the center of rotation, but this
condition is accomplished only to a certain degree of accuracy. The mass center is
however supposed to be on the rotation axis at a distance 4 from the fixed point
(spherical hinge). This situation corresponds to the Lagrange - Poisson case.

Z1 A
view along Oz,

h sin0 V2
Y1
0=0,=0, g
G |
4
Ay N=x,

Fig. 15.12 Gyroscope with Mgh unbalance (a), projections of axes on the Oix1y: plane (b)
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In the absence of gyroscope rotation, obviously the weight makes the body moves
such that the mass center will oscillate about the lowest possible position (—hk ).
However, if the gyroscope rotates with high angular velocity ¢ =Q about the Oz
axis, it will not fall, but for some initial conditions will turn around the Oz; axis in
a motion of regular precession. This motion corresponds to the following
parameters: constant nutation angle @ = 6, = const . and constant precession angular

velocity ¥ = o, =const. Without loss of generality, it can be assumed that the

rotation angle is null at z=0, so that from ¢ =Q it follows ¢ =Qx¢.

Replacing these parameters into the system of equations for the Lagrange - Poisson
case (15.58), it becomes:

@, = w,sin g, sin Qs
w,=0, sin g, cos Q¢

@, =, cos,+Q

’ (15.100)
Ao, +(C - A)o,0, = Mghsinfcos ¢
Ao, (C A) @, =—Mghsinfsin ¢
Cow. =0
The derivatives with respect to time of the first three equations are:
o, =w, € sin g, cos Q¢
o, =-o,Q sin G, sin QO (15.101)

@, =0

and these expression will be injected in the last three equations from (15.100), in
order to obtain after simplification by the harmonic functions in Q¢ , the following:

Mghsing, - CQaw, sin6, l+ﬂ—cos9 =0
’ cC Q

Mghsing, - CQa, sin 6, 1+%5c059} 0 (15.102)

0=0

The second terms in each of the first two equalities can be interpreted as
components of a moment produced by the moving gyroscope called gyroscopic
moment which “equilibrates” the moment of the weight. Following the definitions
of the rotations angles, the weight vector G crosses the Ox;y; plane in a point
belonging to the O;N axis. The moment of the weight projected on the fixed frame
is:
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j J k
M, =|hsin@ sin¥ —hsing,cos'¥ hcosb,
0 0 —Mg

= Mghsin 6, cos Wi + Mghsin 6, sin Vj,

(15.103)

According to the rotation matrix [R;] from (15.25), this vector can be projected on
the moving frame O:x;,y; as

M,,, cosy siny 0| Mghsing,cos¥
M,, |=|-siny cosy 0| Mghsing sin'¥
M 0 0 1 0
o (15.104)
Mghsin 6,
= 0 = Mghsin 6,i,
0

It can be remarked that i, =k, x k (Fig. 15.12b), so that

Qo sinf)i, =, xQ. (15.105)
Since the moment of the weight is equal in magnitude but opposed in orientation to
the gyroscopic moment, it follows that the gyroscopic moment vector must be:

_ — w —
M, =-C {14—%5”(:0590}!)(% sin 6,7 (15.106)

Using (15.105) in the last formula, it can be written that the gyroscopic moment as
a vector is perpendicular on the plane defined by the precession velocity vector @,

and the rotation velocity vector Q:

— C-Ao =
Mg:C[l+?5pcosﬁo}(Qxa)p). (15.107)
Easier to apply in applications is to neglect the second term in the sum above since
o, < €, making shorter the above formula:

M,=CQxa@,. (15.108)

It must be emphasized that the gyroscopic moment can be considered as an active
moment applied on the body which tries to change the orientation of the gyroscope
rotation axis.

Examples
1) A train is following a curve of the railway (Fig. 15.13). If R is the radius of the

curve, r the radius of its wheels and v the velocity of the vehicle, it can be deduced:
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Az d

Fig. 15.13 A train in a curve

The angular velocity of rotation is Q = ¥ for an equivalent rigid body made of the
r

two wheels, with O as fixed point. The rotation axis changes its direction, with an
: % : : . N
angular velocity o, = s Supposing that C is the mechanical moment of inertia of

the two wheels and the shaft connecting them, determined about the Oz axis, the
gyroscopic moment acting on the rails is M, =CQxa@,. This couple of forces is

adding in fact two forces F to the rails separated by a distance d:

p Mo
d rRd

The gyroscopic effect (Fig. 15.13) is increasing the pressure on the external rail
and the pressure on the internal one decreases.

2) A small airplane is engaging in a turn to the left of radius R, with a constant
velocity v. The single engine rotates with N rotations per minute. It has a
mechanical moment of inertia of the propeller and the rotating parts of the engine
(especially for turbo-engines) of C, determined about the plane longitudinal axis
passing through the mass center. Determine the effect of the gyroscopic moment
on the flight path.

Wing tip

-3 Stabilizer Fin
.. Right aileron and elevator
s, :

Right flag _ﬁ““dd"

Propaller 'g ' o Left alleron

&

_

Navigation light

Fig. 15.14 A small airplane turning left (www.nasa.gov)
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The angular velocity of the engine is Q :% (rad / s) and as vector is usually

oriented as indicated in Fig. 15.14 The angular velocity of the plane is @, = %

The gyroscopic moment is M, = CQx @, acting as depicted in Fig. 15.14, making

the airplane to climb. On the contrary, turning right makes the airplane to dive, so
that the pilot must take the corresponding counter-actions to keep the plane level.

15.6. General motion of the rigid body
An arbitrary rigid body is supposed to have a general motion under the action of
forces F, (external applied forces and possibly reactions). Let Osx;y;z; be a fixed
Cartesian frame, O the mass center of the rigid body an Oxyz a movable Cartesian
frame, attached to the body. The frame axes Ox, Oy, Oz are the principal axes of
inertia in the point O. The motion of the rigid body can be decomposed in two
motions:

a) the motion of its center mass ;

b) the relative motion of the rigid body about its center of mass .
The first motion can be determined using the center of mass theorem. It follows
that:

MS% :Xl
Mij1 =Y (15.109)
Mé/1 :ZI

where & , i, , £, are the coordinates of the mass center with respect to the fixed

Cartesian frame fromR = Zﬁl =Xi+Yj+Zk are the projections of the
i=1
resultant vector of all applied and reaction forces on the axis of this frame.

The second motion is a motion of a rigid body about a fixed point O, which can be
determined using Euler’s equations:

@, =ysinfdsing +Hcose
o, =ysindcosp—0Osing
®, =ycosf+¢p

Jo, +(J;-J)oo0. =M,
Jo,+(J, -J)o.o =M,
Jyo,+(J,-J)o0, =M,

(15.110)
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where v, ¢ , 6 are Euler’s angles and Moy, Moy, Mo, represent the projections of
the resultant moment A7, on the axes of the Cartesian frame Oxyz .

In general X, Y1, Zi, Mox, Moy, Mo, are functions of &, n,, ¢, v,p,6. Therefore
(15.109) and (15.110) represent a system that can not be separated in independent
equations. Only in particular cases the decomposition in independent differential
equations is possible.

Example
Determine the motion of a rolling homogeneous circular disk of radius R and mass

M on an inclined rough plane of angle a with horizontal direction. The sliding
friction coefficient is u. Rolling friction is at first ignored, then included with
rolling friction coefficient s. Discuss motion as function of parameter a.

Fig. 15.15 Rolling disk

1) The free body diagram is shown in Fig. 15.15. Besides the weight are plotted the
normal reaction and the friction force Frdenoted also T in some books. The rolling
friction moment M, is ignored at this stage. The linear momentum theorem for the

center of mass can be written:
Ox): ME=Mosina —F
(Ox): Mé =Mg , (15.111)
(Oy,): Mnp=N—-Mgcosa

The relative motion about the center of mass O is a rotation of angle 0. The
theorem of angular momentum about the Oz axis (perpendicular on the figure) can
be written

J,0=F,R. (15.112)
The following geometrical conditions are obvious, for pure rolling motion:
n=R; £=R0. (15.113)
Solving the system of differential equations (15.111) + (15.112) it follows that:
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é_MgRsina _ é’ MgR’ sina
=— =5
J +MR JLMf (15.114)
N=Mgcosa ; Ffz—g Ssina
tJy+ MR

2

Since the disk is homogeneous J, = and the above expressions become

. 2g . s 2 1 :
inmna;é:ggsma; N =Mgcosa; Ff:EMgsma. (15.115)

Consequently the mass center has a uniformly accelerated linear motion and the
disk rotates around its center uniformly accelerated.

The assumed rolling motion is possible only if Fy < uN. The condition resulting
from this condition is :

%MgsinaguMgcosa or tana<3u. (15.116)

If tan a > 3 p, the motion of the circular disk is a combination of rolling and
sliding depending on the initial conditions.

2) If the rolling friction moment is to be accounted for, it will be added as M, = sN
(Fig. 15.15). The equation (15.112) becomes:

JO=F,R-M,, (15.117)

and the expressions (15.115) become:

s 2g . s . 2g . s
0 =—(sina——cosq); & =—2(sina ——cosa);
3R( 2 ) & 3 ( 2 )

, 5 (15.118)
N=Mgcosa; F, :Mg(sma +—Scosaj
' 3R
The necessary condition to avoid sliding: |F}| < uN becomes:
2
tana<3u—?s. (15.119)

3) The disk is assumed to be at rest for t=0, which impliesd =0; & =0.The
differential equations (15.111) and (15.117) become equilibrium conditions:

Mgsina —F, =0; N-Mgcosa=0; F,R-M, =0, M, =sN (15.120)
It follows that for equilibrium:
N =Mgcosa; F, =Mgsina; M, = MgRsina;

) (15.121)
MgRsina = sMgcosa
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From the last equation representing limit equilibrium with rolling tendency:
tana = . (15.122)
R

The condition of no sliding /y<u N becomes:

Mgsina < uMgcosa = tana < u (15.123)
From the last two relations it follows the limit condition of rolling tendency

without sliding:

S
Z<u. 15.124
R <H ( )

The consequence is a condition for the a angle, such that the disk begins to roll
without sliding, from its initial position:

%<tana<y. (15.125)

4) Therefore, if % < u the pure rolling (rolling without sliding) of the circular disk
1s possible if:

S 2s
—<tana<3u—— 15.126
R L ( )

For angles a below the lower limit, the disk will remain at rest if it was initially at

rest. For angles above the upper limit, the disk will roll and slide in a combination
of these two motions, depending on the initial conditions.
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16. PERCUSSIVE MOTIONS

16.1. Preliminaries. Basic concepts
The governing equation for a particle moving under the action of a force F is:

ma =F(7,v,t). (16.1)

This equation can be used if F is defined as a function of position, velocity and
time if not a constant. There are motions with almost instantaneous change in
velocity, but no change in particle position. Such phenomenon arises when a very
large force acts on the particle during a very short lapse of time. Considering the
action of the force between #; and #,, having a time lapse t, — t; very small, it can be
defined the percussion as:

P=[Far. (16.2)

4

The force F is called to be an impulsive one. An example of impulsive motion is a
collision between two spherical bodies which produces large forces acting for a
short duration. During a collision there can be identified two periods: a period of
compression and a period of restitution (expansion).

F )3

O tl t2

Fig. 16.1 Percusion and the two periods: compression and restitution

During the period of compression in the given example, the centers of two
spherical balls are approaching each other and then the balls start to regain their
spherical shapes, pressing against each other until they separate.

The normal percussion P, during restitution is smaller than the normal percussion
P, during compression, defined by a ratio k, called coefficient of restitution:

P, =kP, (16.3)

These two percussions P, and P, act on a given body in the same direction and
sense and are normal to the tangent plane at the point of collision common to the
two bodies. The coefficient of restitution verifies the inequalities:

0<k<I. (16.4)
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If £ =1 the collision is said to be perfectly elastic and if £ = 0 it is perfectly
plastic, but none of these cases corresponds exactly to real facts.

The impulsive forces are very large and compared to them, the usual external
forces can be neglected. The displacements of two bodies during the very short
interval of percussion can also be neglected. These are the hypothesis used in the
following

16.2. General theorems of dynamics in the case of impulsive motions

16.2.1. The theorem of linear momentum
From the general form of the theorem:
H_SF, (16.5)
dt i=1

in which F, i=1,...,n are only the impulsive external forces, it can be written
successively :

dH = Zth:jdH IZth {deJ P (16.6)

1 l‘lll

In fact the linear momentum undertake a sudden change, so that the differential
corresponds to the finite variation of the momentum:

~H'=YP, (16.7)
i=1

H" and H' are respectively the linear momentums after and before the collision.

16.2.2. The theorem of angular momentum
The theorem of angular momentum for a material point is:
K, < =
K, => xF (16.8)
dt 5

where F, are only the impulsive external forces. It can be deduced successively:

dK , :i(fxﬁl dt:>de I{ 3 F;)dt}ziﬁx[jﬁ}:ifxf; (16.9)
11 i-1 " i1

i=1
Due to the sudden change of the angular momentum, it can be written:
K,-K,=>TFrxP, (16.10)
K! and K being respectively the angular moments after and before the collision.
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16.2.3. The theorem of energy
The theorem of linear momentum for a particle of mass m; which simultaneously is
submitted to percussion from the surrounding medium and from » other particles,
has the form:

myv'—my, —P+z > (16.11)
in which it is assumed P, = 0. Multiplying this equation by v/, one gets:
m (7 —m7 =B+ P (16.12)
j=1
The left side of this equation can be cast into the form
%mi(\_/;')z —%ml. (¥) +%mi(\7;'—\7lf)2 B+ B Y (1613)

For a system of n particles, the previous equation can be written for each particle.
Adding these equations, it can be written:

NI WICIRE WA LS TR WA ES DL A A
i=1 =l j=1

or

n n

T"-T'+T,=Y B-V'+ IR (16.15)

1

<

i=1 i=1 j=1

where 7"and 7" are the kinetic energy before and respectively after collision and
T, is the so called kinetic energy of lost velocities:

T :%Zmi(v;—vi)z (16.16)
i=1
If » P-v'=0 and P, -v/=0, equation (16.15) becomes:
i=1 =1 j=I
T'-T"=T,. (16.17)

This last relation is known as Carnot’s theorem and proves that the energy of the
system diminishes after percussion.

The condition Z}_’, -v'=0 is accomplished if there are acting only percussions
i=l
which are internal to the investigated system, so that E =0; i=1,...,n. The other

condition ZZP =0 can be accomplished in some particular cases: a) V' =0:
=l j=1
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perfectly plastic collision; b) 17in J_Ej: material points attached by inextensible

strings.

16.3. Normal collision of two spheres

The simplest example of impulsive motions is represented by two spheres which
are moving along the line joining their mass centers.

»
»

A

Fig. 16.2 Normal collision of two spheres

The axis Ox is along the line of centers, m;, m are the masses of the spheres; V], v,

-

and v, v, the velocities of the mass centers before and respectively after collision.
P., P, are the magnitudes of the percussion during the compression and restitution
periods respectively, k is the coefficient of restitution; u represents the common
velocity of the centers at the end of the compression period which is also the
beginning of the restitution period.

For the period of compression, the theorem of momentum for the two spheres can
be written as:

—V)==—P
(4 =) ‘ (16.18)
m,(u—v,)=P,
and for the period of restitution:
" —_p
m (0 ~u) " (16.19)
mz(v;’—u)=Pr

The relation between percussions is:
P =kP. (16.20)

By adding the four equations (16.18) and (16.19), the two percussions and the
common velocity u are eliminated:

14 14 / !/
my/ +m,v, =my, +m,v, (16.21)
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The ratios of the first equations of (16.18) and (16.19) as well as those of the

second equations are both equal to the coefficient of restitution:

14

14
ViU _v,—u

=k,

u—-v u-v,
or
v+ kv =V + kv, =u(k+1).
From the first equality of (16.23) it follows:

The velocities after collision can be deduced from (16.21) and (16.24):

W=V —k(V] —v;):;::v[ +v, —mlvl”—k(vl'—v;):(nnz—kjvl’ +(1+k)V), —nnzlv”

m,

v;':vl”+k(vl'—v;):vl'+@v; —mzv;'+k(v1'—v;)=[mz—kjv;+(l+k)vl'—
moom m

or

m, —km l+k)m
vi=—1 2v1'+( ) 2V,
m, + m, m, +m,

m. —km 1+k)m
V=2 1v’+( ) Lyl

2 2
m, +m, m,+m,

The dissipated energy is

1 ,1 ,1 ,1
-1 = mlvlz—i mlvlzntémzvzz—imzvzz

(16.22)

(16.23)

(16.24)

(16.25)

(16.26)

1

> m,m,

2(1+k)m, +(1- k)nq‘}z L (1+k)'m

20+0m +(1-)m, , 1 1+k)'m, |,
" 5 ”72V12_2m1 ( ) mivzz—(1+k)mlm2
(m +m,) (m+m,)

2”712

2(ml +mz)
:(l—kz)mlmz (v’— ,)2

2 2 2‘);2_ I+k mm, mz_lWll 1"; (16.27)
(ml+mz) 2 Y (mAm,) (1+#) (m+m,)

[(1 =) +m, ) (1) -2(1- )mﬁ’%)vf‘ﬂ

2(m+m,)
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16.3.1. Perfectly elastic collision
If k=1 the velocities after collision are:

m m m,—m 2m
V=—2— K—l—l]v{+2v;}= 2y + V)

m,+m, |\ m, m, +m, m, +m, (16.28)
vy M Hﬂ—ljv; +2v1'} _ I T, v, + 2m, v
m,+m, |\ m, m, + m, m, + m,
If the two spheres have identical masses (m;=m:), then
W=y Vi=v, (16.29)

which means that the spheres “exchange velocities”. This case is particularly
interesting because, in the kinetic theory of gases, the mathematical model presents
the molecules as perfectly elastic spheres.

The dissipated kinetic energy from (16.27) is in this case (k=1):

T'-T"=0. (16.30)

16.3.2. Perfectly plastic collision
Considering k£ = 0 the velocities after collision are:
y=vy = IO (16.31)
m, +m,
proving the two spheres have the same velocities after the collision.
The dissipated kinetic energy from (16.27) is in this case (k=0):
m,m 2
T'-T"=—"122—(v/—V))". 16.32
2(m1+m2)( : 2) ( )
Considering v, =0, the rate of dissipated energy is:
-7 m, 1

] - - .
T m +m, 1+m/m,

(16.33)

This formula has two practical applications:

e If a nail is to be inserted into a piece of wood, the rate of the dissipated
kinetic energy must be very small during the collision with the hammer,
transmitting a maximum of energy to the nail. Therefore the condition the
mass m; of the hammer must be very large with respect to the mass m, of the
nail (m; >>m2).

e On the contrary if the intention is to deform a piece of metal, the rate of the
dissipated energy must be very large, since it must be transformed into
energy of deformation. Therefore for a given mass m; of the hammer, the
mass m; of the iron piece must be large, or increased by putting it on a large
anvil.
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16.4. Oblique collision of a sphere

Considering for example a spherical tennis ball of radius r hitting the horizontal
surface of ground with an oblique velocity V' of its mass center (the angle between
the velocity vector and the vertical direction is o) and an angular velocity o'. If k
is the restitution coefficient and m and Jc are respectively the mass and the
moment of inertia about an axis passing through the center of the ball, it is to be
determined the velocity V" and the angular velocity @" after the collision.

1o

Fig. 16.3 Oblique collision of a sphere against a planar surface

Two percussions act on the tennis ball during the collision: one normal to the

common tangent plane P, and another tangential P,, which are the projections of

the percussion as a vector, produced at the impact with the flat surface. Let be V",

" and B, the velocity of the mass center, the angular velocity and respectively the
—

angle between V" and the vertical direction after collision. The theorems of linear
momentum and angular momentum are in this case:

mv"sin f—mV'sina =—P,

mv"cos B —m(—'cosa) =P, (16.34)

" r_
J.o'—J o' =rP

The relation between the percussions during the periods of restitution and
compression is equivalent to a similar relation between the relative normal
velocities (16.24) is in this case:

po_tu__V'cosp (16.35)

v —V' cosa

n

The equations (16.34) and (16.35) form a system of four equations with five
unknowns: V', ,@",P,,P.. Another equation is thus necessary. Three hypotheses

can be considered:
a) the surface of the ground is perfectly smooth. Then the fifth equation can be

P=0. (16.36)

t

In this case the equations become:
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V'sin f=V'sina

mv"cos f—m(—v'cosar) = P
vioosf " (16.37)

®"=w

v'cos f=kv'cosa

Consequently

v”=v'\/sin205+kzcosz,6’; tanﬂzitana and o'=0'. (16.38)

Note that if k = 1 (perfectly elastic collision):
V=V, f=a. (16.39)

Therefore the modulus of the velocity doesn't change and the angle of reflection is
equal to the angle of incidence. This case is particularly interesting because in the
theory of light, the collision of photons with a reflecting surface is considered to be
perfectly elastic. It is to be noted also that the components of linear momentum and
consequently the velocity components parallel to the common tangent plane on the
sphere undergo no changes:

V'sin f=V'sina. (16.40)

b) the surface of the ground is rough and the relative motion of the ball with
respect to the ground at the end of the collision is a pure rolling (without sliding).
Then, the instantaneous center of rotation is located at the point of contact of the
ball with the ground at the end of the restitution period, and the fifth equation is:

v, =V'sinff—rao"=0. (16.41)

Supposing that before the impact, the ball had no angular velocity®' =0, the
equations are:

mv"sin f—mV'sina =—P,
mv"cos f—m(—v'cosar) = P,
J.o =rP (16.42)

v'cos f=kv'cosa

V'sin f=rao"

Consequently the solutions are:

2 2 2
V= Lz sina+k*cos’a; tanf= thana
Jo+mr k(JC+mr ) (16.43)

, mrv'sina
&' =—
Jo+mr
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Note that after impact, the ball will rotate about its center (@" #0) even if the
initial motion of the ball had no such angular velocity @' =0.

c¢) The surfaces in contact are rough, such that the tangent percussion is related
to the normal percussion, by the dry sliding friction law of Coulomb:

P=uP, (16.44)

in which g is the sliding friction coefficient. This is the fifth equation, of the
system:

my"sin f —mv'sina = —P,
mv"cos §—m(—V' cosar) = P,

J 0" =P (16.45)
v'cos f=kv'cosa

B =ub,

From the first two and the fourth equations, it follows:

v'cos B(tan B+ ) =kv'(tan B+ p)cosa =V'(sina — ucosa)  (16.46)

from which:
tanﬂ:tana_l(:_‘_k)'u. (16.47)
From (16.46):
v"=v'\/k2 +(tane —(1+5) u)’ cosar (16.48)
From the third and first equations of (16.45) and (16.47) it follows:
o' ="y cosa(tanar — ktan B) = (1+ k)22 v cosa (16.49)

C C

As it can be seen, the percussion phenomenon is complex and more detailed
information or hypotheses are needed for an accurate evaluation of the mechanical
parameters after the impact.

16.5. Impacting a rigid body rotating about a fixed axis

A rigid body is rotating about a fixed axis Oz (Fig. 16.4) and a movable
Cartesian frame Oxyz attached to the body, such that the mass center C is in the
Oxz plane. The points O; and O, are spherical joints on the Oz axis (0,0, = h).
The body is defined by its weight G = Mg with M the mass of the body Iy, Iy, J,. Iy,

Jy2 , Jxz, the moments of inertia and the products of inertia of the body with respect
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to the Oxyz frame, and C (5,0,4’ ) the coordinates of the mass center. Denoting by
®' and @" the angular velocities before the collision and after it and projecting the
given percussion P = PXzT+Py]_' + Pk applied on a point of coordinates x, y, z of

the body. The projections of the reaction percussions P and P, in the spherical
joints O; and O; are denoted by Py, Py, P;- and P», P, P». respectively.

Fig. 16.4 A percussion applied to a rigid body with a fixed axis

The linear momentum and angular momentum expressions are for arbitrary o:

Jv _ny
[K o] = _J,vx Jy
_sz _Jzy

™ 8 I

=M
(16.50)
-J o
-J.0|=>K,=-J ol -J 0oj+J ok
| J.o
=(yP.—zP,)i +(zP.—xP.)] +(xP, - yP,)k
(16.51)
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The theorems of the linear and of the angular momentum can be written in this
case:

H'-H =P+B+P,
_ I (16.52)
K!'-K =rxP+00, %P,
The six projections of these equations are:
0=P +A +P,
Mé(o"-a')=P +P +P,
O0=P +h +P,.
~J (0" @) =yP, —zP +hP,
—J (0" —&')=zP, - xP, + hP,,
J (0" - @) =xP, - yP,

(16.53)

There are six equations and seven unknowns. The percussions P;, and P», cannot
be determined because there is only one equation containing these unknowns. This
situation has been already encountered for this constraint and can be easily solved
if one spherical hinge is replaced by a cylindrical one, keeping the same mobility
of the rigid body. If the spherical joint 2 is replaced by a cylindrical hinge then
P,_=0and B, =-P . The angular velocity after percussion can be obtained from

the last equation:
P, - yP.
J

z

U /

"=+ (16.54)

16.5.1. Center of percussions
It is very important from the practical point of view to determine the conditions for
which the reaction percussions P, =0and P, = 0. The equations (16.53) become:

0=P, ~J (&"-a)=yP - zP,
Mé(o"-w)=P, -J (&"-')=2zP, —xP, (16.55)
0=P J. (0" - ') =xP, - yP,

These conditions can be expressed from the first and third equations, as:
P =0, P=0. (16.56)

This means that the percussion must be perpendicular to the plane defined by the
axis of rotation and the mass center. Replacing these conditions in the remaining
equations and in (16.54) these become:
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" r XI)y
Mff(a) —C()):ng—:])y

xP
—J (0" -)=-J —*=-zP,
J. : (16.57)

~J (0"-0)=0

xP
J(o"-a)=J —2L=xP
z ZJ y

z

from which, the last one being an identity, three more conditions:

P P (16.58)
ME J. o Mm&

One consequence is that the given percussion P must cross the plane on which it is
perpendicular in a point of coordinates x and z given by (16.58) and this point is
called the center of percussions for the given body. The rigid body must have
either the Oxy or the Oxz as symmetry planes so thatJ _ =0.

Application 1

A rod of length / and mass m can rotate freely about a cylindrical hinge placed at
one of its ends. Determine the center of percussions of the rod and the angular
velocity @" if @' =0.

0]
—4— ¥ Due to the material line model J_ = IOZ yzpAdx =0, in which p

L,m is the mass density and A the area of the cross section. The
X percussion must be perpendicular on the rod, which is situated
P in the plane defined by its mass center and the Oz axis. The
v N only parameter to be determined from (16.58) is
2 xP
X = o mi :%l. From (16.54) " =—== 212 P:E
Ms 4 103 J.  ,ml ml
" " =

Application 2
Two rods are connected by a hinge and one rod is attached to a fixed hinge. The

rods have identical lengths / and masses m. Determine their angular velocities after
the application of a percussion P normal to the rod, at a distance x from the fixed
hinge. The rods are at rest before the percussion.

234



O P]x P]x
m—ﬂﬁ‘—b y "—_VP]y "__>P1y
IL,m N 4 a)l” d a)l"
X
P
p _— A
\ A P r' N
g P2y P2y 2x ng ng PZX
—  — 5 < "
P2x P2x 0)2
v a);, ~Av v b N B 4
——
a) b)
X
v

a) If x </ the theorems of linear and angular momentum can be written for each of
the two rods (see figure a):

O:Plx +PZx O:_})Zx
[ " " [ "
mza)]—O:P+P1y+P2y; m(la)lJrEa)zj—O:—sz
lz " 12 " l
m?a)l—0=xp+lpzy maa)z—ozal)zy
The solutions are obtained from the two last equations of the two groups:
~ml » 12 Px 18 Px
Bomg o AT T T

It follows that if the percussion is applied to the first rod, the first rod rotates anti-
clockwise and the second rod rotates faster and in the opposite sense. The reaction

o ) 9 :
percussion is B, = mza)l"— P-P, = P(7—JIC - lj and the percussion center for the

first hinge is at x = %l .

b) If x>/ the percussion is applied on the second rod. The theorems of linear and
angular momentum can be written for each of the two rods (see figure b):

0=P_+P, 0=-P,

l U4 4 l 4

m—a/-0=F +P ; m(la)1+5a)2)—0=P—sz
I’ I / ( 31)
m—a-0=IP, — @ -0=—P +P|lx-—
34 2 TR T T,

The solutions are obtained from the last two equations of the two groups:
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ml " P CO;’ l 3 " 3P
szz?a)lzz—?ml;a)l+§a)2=1%;

o= (51-30); wr=F (8x-111).
Tml Tml

1 2

The next table summarizes the signs of the angular velocities, the positive sign
corresponding to anticlockwise rotations.

X / 11/81 5/31 2l
] + + 0 -
w>r |- 0 + +
. . [ , 2P P
The reaction percussions are: P, = mZ o= 7(51 —3x) and P, = W(SZ —3x). It

. : : 5 :
is interesting to note that the percussion center ngl cancels both reaction

percussions.

236



17. DYNAMICS OF A MATERIAL POINT WITH VARIABLE
MASS

17.1. Basic Equation of the Motion of a Material Point with Variable
Mass

The motion of a body of variable mass, such as a rocket, changes its mass because

some particles leave the body or are brought to the body during the motion. In the

example of the rocket, when the fuel burns, gases are expelled propelling thus the

rocket by the reaction force. The mass of the rocket diminishes therefore, by the

mass of the evacuated gases.

If m is the mass of a material point at time ¢ and v its velocity, it can be
considered that a small particle of mass 4m and velocity u is attached to the
material point. At the moment ¢ + A¢, the velocity of the material point shall be v +
Av. Applying the theorem of linear momentum for impulsive motions, it can be
written:

H' —H' =(m+Am)(¥ + AV) — mv — Amii = FAt, (17.1)

where Fis the force acting on the material point during the collision. Dividing by
At and passing to the limit, with Az — 0, it results:

u—-v). (17.2)

. _ v : . . C
Replacing a = o the acceleration of the material point and considering u —v =7V,
t

the relative velocity of the small particle of mass 4m with respect to velocity of
the material point of mass m, then the equation (17.2) can be written:

ma=F+d—mv,,. (17.3)
dt

17.2. The Motion of a Rocket
A rocket moves along a straight line which is taken as the Ox axis. It can be
assumed that /' =0, the sum of external forces.

Fig. 17.1 Motion of a rocket
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Since the Ox axis and v, have opposite senses (Fig. 17.1), the equation (17.3)

becomes:
m)'c'z—d—mvr. (17.4)
dt
Since X = ? = v , this equation can be written as:
t
mﬂz—d—mvr = dv=—d—mvr. (17.5)
dt dt m
Integrating this equation, it can be obtained:
v=—v In(m)+C. (17.6)
If v, and m, are the velocity and the mass of the material point at ¢ =0, then
v, =—v,. In(m,)+C (17.7)
and the equation (17.6) can be written by eliminating the integration constant:
V=v,+V, ln(%j. (17.8)
m

If the rocket moves vertically upwards and the axis 0x is directed the same way,
the equation (17.3) becomes:

dm
mi=———v —m 17.9
and the solution becomes:
v=y,—gt+v In(m,/ m). (17.10)

If the imposed function of fuel combustion is linear, the mass of the rocket is:
m=my(l-at), (17.11)

and the equation (17.9) can be written:

%:vo—gt+vrln(l—at). (17.12)

Integrating this equation, the equation of motion is:

x=x0+v0t—%gt2+%[(l—az‘)ln(l—at)+at] (17.13)
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18. PRINCIPLES OF ANALYTICAL MECHANICS

18.1. Preliminaries

In Classical (Newtonian) Mechanics, the study of the motion of a material point is
based on the fundamental equation ma = F where F is the force acting on a free
material point. This equation is not valid if the material point is constrained. In this
case the geometrical conditions can be replaced by reactions according to the
principle of constraints.
The problem is more complicated in the case of a system of material points
because internal forces can play a role. In order to eliminate these forces, it is
necessary to use the general theorems of dynamics. If the problem is complex,
involving many particles, the elimination of the reactions is very difficult. Each
problem of dynamics needs the use of a particular theorem and a dedicated method
of solution.
Analytical Mechanics, founded by Lagrange, offers a general method permitting to
eliminate the reactions and to write the equations of the motion in a general form.
Analytical Mechanics is based on two principles:

- the principle of virtual work;

- the principle of d'Alembert.
Two problems have to be solved first: the problem of constraints and the problem
of displacements.

18.2. Constraints
A system of n material points 4; (i = 1,..,n) is considered, having coordinates
A (x,,y,,z,). If the constraints of the system can be expressed by m (m < 3n)

functional independent equations relating the coordinates:
F (X3 V15 Zpseees X Vi Zines Xy Vs 2, ) = 05 j=L..,m (18.1)

then the constraints are called holonomic. If all the constraints of the system are
holonomic, the system of material points is called a holonomic system. The
system of material points has in this case: 4 = 3n - m degrees of freedom. It is
possible to solve the system (18.1) with respect to selected %~ independent
parameters ¢; ... g, in the form:

X =X(qerq); Vi =Y(@serdy); 2 =2,(q1500q,); i=l.on  (18.2)
The independent parameters ¢; ... g, are called the Lagrange generalized
coordinates.

Example. Two material points A;(x;,y1,z1), A2(x2,y222) are connected by a rigid
rod. The constraint can be written:
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A,

A
J3

v G

X/ q2 ' a) X/ @ g qs b)

Fig. 18.1 Choice of Lagrange generalized coordinates

(xz—xl)2+(y2—y1)2+(22—21)2—d2=O, (18.3)

in which d is the constant distance between the two material points. The system has
3-2—-1=35 degrees of freedom. It can be proven that the relations:

X =4 Y1=49 Z,=4;
X, =q, +dsing, cos
) =4 . q, . qs (18.4)
v, =¢q,+dsing,sing,
Z, =¢;+dcosq,
express the material coordinates x;, y;, z;, X2, y2, z» with respect to five Lagrange
generalized coordinates g, g2, g3, g4, g5 (Fig. 18.1a).

Note that the system of Lagrange generalized coordinates is not unique. It is
possible to choose other Lagrange generalized coordinates q;, g2, g3, g4 ¢s. For the
same example (Fig. 18.1b):

X, =4 V=49, Z=(5,
Xy =(,
Y2=4s
2 2 2
%=%+¢i%%—%)%%—%)

If the functions  F (X020 X, V200X, Y,,2,)=0; j=1..,m  are

(18.5)

differentiable, then the equations (18.1) can be written in the differential form:
oF oF oF’ oF oF oF’ oF’ oF oF
—do+—dy+—Ldz . LA +—dy+—L g+ —Lde, +—Ldy, +—Ld, =0
ox. o, (o4 ox, o, az, (18.6)
j=L...m
This form proves that the m constraints for holonomic system of material points
can be expressed by relations between the natural coordinates (x,y,,z) as in
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(18.1), or by m relations between the infinitesimal displacements (dxi,dyi,dzl.) as

in (18.6) and that these two forms are equivalent. Passing from the differential
form to functions of coordinates is not always possible, because a differential form
(or a system of differential forms) is not always integrable. For example the
differential form:

P(x,y,z)dx+Q(x,y,z)dy + R(x,y,z)dz=0 (18.7)

is not integrable for arbitrary functions P,Q and R, meaning that there is not always
possible to find a function f{x,y,z) so that (18.7) is equivalent to:

f(x,,2)=0. (18.8)
For this to be true, it is necessary that:
of (x,v,z of (x,y,z of (x,y,z
P(rrz) = TE22) o 30y - T 022 2y T2 (g5
ox oy 0z

or

o_20, 20 R oR_oP 15.10)
oy Ox oz 0Oy ox Oz

If these conditions are not accomplished, then (18.7) is not integrable. The
constraints are called nonholonomic if the constraints are expressed by differential
non-integrable forms. If some of the constraints are nonholonomic, the system of
material points is also called nonholonomic.

Example. The motion of a skate on ice without side-slip (Fig. 18.2). Let be x and y
the coordinates of C, the central point of contact of the skate with the ice with
respect to the Cartesian frame Oxy situated on the horizontal plane of the ice and
by 0 the angle between the skate and the Ox - axis.

y %0
y zr
O X "X

Fig. 18.2 A skate moving on ice

The condition of motion "without side - slip" imposes the relation between the
components of the velocity for the central point (x,y) of the skate:

Y—tand = dy-drtan6=0. (18.11)
R
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This equation is non - integrable. Indeed, it has the general form:
P(x,y,z)dx+O(x,y,z)dy + R(x,,z)dz =0, where:

P(x,y,z)=tan®; O(x,y,z)=1; R(x,y,2)=0. (18.12)
It follows:
8_P28_Q:0; a—Q:a—R=0;but a—R=O¢a—P=— 12 (18.13)
dy Ox 00 oy ox 00 cos” 0

Consequently no function f(x,y,z)=0 can be obtained in this case. Therefore the

parameters (x, y, 0) are independent, but the infinitesimal displacements (dx, dy)
are not independent.

Considering the system of differential equations (18.6), it can be remarked that if
the m relations are functionally independent the rank of the matrix :

OF, OF OF, OF, OF OF

(18.14)
oF, OF, OF, OF, OF, OF,

| ox, oy, 0z,  o&x, oy, oz, |

will be r = m.

If by replacing in (18.14) the natural coordinates (x,,y,,z,) (i = I,..n) by the
Lagrange generalized coordinates g; ... g, the rank of the matrix (18.14) remains
r = m, then the system of material points is holonomic. On the contrary if » < m,
then the system of material points is called critical.

Example. Considering a system of two material points A(x;y;) and B(x:),)
situated on a circle of radius 7 and kept at all times at the extremities of a diameter
(Fig. 18.3).

Fig. 18.3 Two points linked by a diameter of a circle

242



The relations expressing the constraints are:

xlz—i-ylz—r2 =0; xzz+yzz—r2 =0;

(18.15)
2 2
(x2 —xl) +(y2 —yl) —4r° =0
These relations are functionally independent because the functional matrix:
2x, 2y, 0 0
0 0 2x, 2y, (18.16)

—2(x2—x1) _2(y2_y1) z(xz_xl) 2()/2—)/1)

has the rank r = 3 since there is at least one non null determinant of order 3.
However, by replacing the natural coordinates x;, y;, x, y, by their expressions
with respect to the Lagrange generalized coordinate ¢ (Fig. 18.3):

X, =rcosq; y, =rsing;

. (18.17)
X, =—rcosq; y,=-rsing;

then the rank of the matrix (18.16) is » = 2. The number of degrees of freedom in
infinitesimal displacements is 2, greater than the number of degrees of freedom in

finite displacements.
The following table summarizes the discussion of the problem of constraints.

The system Number of degrees of freedom

Finite displacements Infinitesimal displacements
Holonomic h hy,=h
Nonholomic h h,<h
Critical h h.>h

If the functions F.(x,, ;.25 X5 V15 Z15en X5 ,,2,) =0; j=1,...,m do not depend

on the time t, the constraints are scleronomic and the system of material points is
called scleronomous.

Example. A simple (mathematical) pendulum is a material point attached by an
inextensible string to a fixed point (Fig. 18.4a). The constraint is scleronomic, the

function:

F(x,y)=yx>+y"-I’=0, (18.18)
does not depend explicitly on time.
If the functions Fj(xl,yl,zl,...,xi,yi,zi,...,xn,yn,zn,t):0; j=1,...m depend

explicitly on the time ¢, the constraints are called rheonomic and the system of
material points is called rheonomous.
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A(x,y)

Fig. 18.4 A scleronomous mathematical pendulum (a) and a rheonomous one (b).

Example. A simple pendulum is attached by an inextensible string to a moving
slider (Fig. 18.4b). If the slider moves following the time function x, = x, sinwt

the constraint is rheonomic, since the function:

Fx,y)=(x—x,sinot) +y* 1 =0, (18.19)

is depending explicitly on time.

18.3. Displacements

A rheonomic constraint is considered in the following, for example a movable or
deformable surface (Fig. 18.5) at the moment of time ¢ and at ¢ + dt and a point A
on this surface.

Fig. 18.5 Real, possible and virtual displacements

Supposing that the displacement of this point during the interval of time (z, +d¥)

under the action of the force F applied onto the material point is AB =dr . The
infinitesimal displacement dr is called real displacement.
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If other forces would have acted on the material point, its displacements could
have been AB; , AB;, ... . These displacements are called possible displacements.
Obviously the real displacement is one of the possible ones.

Suppose that the surface is immobilized. Then the displacements of the material
point can be AC;, AC,, ... . Let be o7 such a displacement. It is called a virtual
displacement.

If f(x,y,z)=0 is the equation of the surface, then the real displacement

dr (dx,dy,dz) and the virtual displacements &7 (5x,8y,5z) verify the following
differential conditions:

df:@dx+gdy+@dz+@dt=0
ox oy 0z ot
(18.20)

5f=g5x+g5y+g5z=0
Ox oy 0z
The virtual displacements have the following features:
a) are infinitesimal;
b) are compatible with the constraints at time ¢;
c) are independent of the time t;
d) are arbitrary.
Examining the formulas (18.20) it can be concluded that the “6 operator acts as a
“d” (differential) operator with the only difference that “6” does not act on the
variable “time” (¢).

18.4. Principle of virtual work

A material point A is constrained to move on a smooth surface and a given force
Fis acting on it. The constraint can be replaced according to the principle of
constraints by a normal reaction N. It can be written:

N-67=0 (18.21)

because o7 1s a vector situated in the tangent plane in A to the surface and
obviously N L&7. Since N is a force and &7 a virtual displacement, the
relation(18.21) can be considered as the expression of a virtual work oW of the
reaction force N. This relation can be generalized for the case of a system of
material points with only smooth constraints. If Eﬁ i=1,...,n are the reaction

forces, from which some can be null, then
W =Y R6F =0. (18.22)
i=1

This relation expresses the general form for the Principle of virtual work:
“For a system of material points with smooth constraints, the virtual work of the
reactions is null”.
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A system of material points acted by the given forces F; i =1,...,n . The necessary
and sufficient conditions for the equilibrium are:

F+R=0; i=l,..n, (18.23)

where El,; i =1,...,n are the reactions.
Multiplying these relations by o7 using the scalar product and adding afterwards
the obtained equations, (18.23) becomes:

> FESr+ ) Ror=0. (18.24)
i=1 i=1
Using (18.22) for the reaction forces, it follows that:

SW = For=0. (18.25)

i=1
This relation is a particular form for the principle of virtual work:
“If a system of material points with smooth constraints is acted by the given forces
Fi; i=1,...,n, then the necessary and the sufficient condition for the equilibrium is
that for every virtual displacement o7; i=1,...,n the virtual work of the given
forces should be null”.

Example 1. Determine the angle a for the position of equilibrium of the bar AB of
length / and mass m shown on Fig. 18.6. The distance a is given.

The only given force acting on the bar AB is its weight G applied at its mass
center. A fixed Cartesian frame Oxy is considered with the origin in the corner.
The virtual work of G must be null:

oW =-Goy,=0=0y,=0. (18.26)

Fig. 18.6 A bar at equilibrium simply supported at one end and against a fixed corner placed at a distance a.
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. 1. .
Since y, = Esm o —atana, it follows

5yc:(lc0sa— az J&a:O:cosa:%Qa/l. (18.27)
2 cos” o

Example 2. Determine the angles «,, &, and «, for the position of equilibrium of
the system of light bars shown on Fig. 18.7. The bars have lengths /;, /5, /; and
vertical forces are applied on the common hinges. A horizontal force F enforces
equilibrium.

A

Fig. 18.7 A system of rigid bars of negligible weight at equilibrium, having equal lengths by pairs.

The given forces are P,P,,P, and F. The fixed Cartesian frame Oxy is

considered. The wvirtual work of these forces for every virtual
displacement must be null. It follows:

oW =-Boy,—Poy,—Poy.—Fdx,=0. (18.28)
The coordinates of the points where forces are applied are:

y,=lsna; y,=Lsina,; y.=[Lsina;;

(18.29)
x, =l cosa, +1,cosa, + 1, cosa,
The components of the virtual displacements are:
oy,=lcosada; oOy,=1cosa,0a,; O0y.=Icosa00;; (18.30)

o0x, =—I sina,0a, -1, sina,0a, -, sina,oa,
Substituting these expressions in (18.28) one gets:
oW = (=Pl cosa, + Fl sina,)oa, +(=Pl, cosa, + Fl,sina,)oa, + (1831)
(=Pl cosa, + Fl;sina;)oa, =0

Since the condition (18.31) must be verified for every virtual displacements
corresponding to the parametersoa,,oa,,dc;, three sets of values will be

considered:
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oa, # 0,00, = da, =0;
oa, #0,0a, = da, =0, (18.32)
oa, #0,0a, =oa, = 0.
Three independent equations are thus obtained:
—Pl cosa, + Fl sina, =0;
—Pl, cosa, + Fl,sina, =0; (18.33)
—Pl cosa, + Fl;sina, =0;
with the solutions:

&

P,
tang, =—; tanazzf; tana3=F3. (18.34)

|2

18.5. Torricelli’s Principle.
A system of material points 4, is considered, of masses m, (i =1,...,n) acted only by

their own gravity forces mlé. If the vertical axis Oz of the fixed Cartesian frame

Oxyz has its sense upwards, then using the principle of virtual work, the condition
of equilibrium of this system of forces can be written:

n

Z—migé';i:—imlgé'zi =—gzn:mi52i =—gM&, =0. (18.35)

i=1 i=1 i=1
or in a simpler form:
o¢ =0. (18.36)

in which ¢ is the z coordinate of the mass center for the system of material points.

It follows that “a system of gravity forces acting on a system of material points is
in equilibrium if and only if the “altitude” ¢ of the mass center of the system of
material points has a stationary value (if { is a maximum, a minimum or simply
stationary)”. This represents the Torricelli’s principle.

If £ is a minimum, it can be proven that the equilibrium is stable.

If £ 1s a maximum or simply stationary then the equilibrium is unstable.

An interesting application is the common catenary as a form of equilibrium for a
uniform cable hanging freely under its own weight. If all the possible forms of a

cable having the same length are considered, then the mass center of the common
catenary has the minimum “altitude”.
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18.6. The principle of d’Alembert
A material point is constrained to move on an inclined plane (Fig. 18.8a).

— v. —ma
N

F

a

|
|
+
=|

F

]
=l

o F

2) b) c) d)

Fig. 18.8 A material point moving on an inclined plane (a). Free body diagram (b), active and lost forces (c),
pseudo-force (d).

In classical mechanics the inclined plane is replaced by the reaction N (F 1g. 18.8b)
and the fundamental equation of dynamics is written as: ma=F + N. It can be
avoided the normal reaction N if the force F' is projected as two components: F,

andf,. The component Fa is called active force. It contributes to the accelerated

motion and is equal to ma. The component F, has no effect on the frictionless

motion of the material point. It is called lost force.
These considerations can be generalized for a system of material points.

Considering all the lost forces of a system of material points to be P_‘h 1i=1,..,n),

this system of forces has no effect on the motion of the system of material points.
Since:

" (18.37)

it follows that:
F=F-F =F—ma. (18.38)

The Principle of d'Alembert can be expressed in the II-nd form:

“By adding to the given forces f[acting on the system of material points 4, of
masses 1, the fictitious forces (F, = —ma,), then the obtained system of forces is
in a fictitious equilibrium”.

The principle of d'Alembert considers the force (—m,a,) acting on the material
point 4 (Fig. 18.8d). Obviously, in this case the force (-ma,) is fictitious or a

pseudo-force and the equilibrium is fictitious or pseudo-equilibrium. The
principle of d'Alembert reduces the investigation of the motion of material points,
which is problem of dynamics, to a problem of statics.
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Example. Atwood's machine.

At the ends of a string (inextensible, weightless) passing over a weightless pulley
of radius r are suspended two material points of masses m,and m, (Fig. 18.9a).

Determine the acceleration @ of the material point of mass m,, the tension T in the
string and the reaction R in the bearing of the pulley.

Two fictitious forces (—m,a ) and (—m,a ) are introduced over the real forces. The
equations of equilibrium for the whole “rigid” system are:

R. =0
R, —mg—mg+ma—mua=0 . (18.39)

(mg —ma)r —(m,g +mayr =0

A _ _mza
N :
| m,g
l -ma

b) c)

Fig. 18.9 The Atwood machine. Model without moment of inertia (a). The masses with acting forces (b).

The solutions are:

m,—m
a=——2g; R_=0; R
m, +m,

_ Amm, (18.40)

y
m, +m,

Separating the material point m, (Fig. 18.9b), the equation of projection on a
vertical axis is:

2mm,

I —-mg+ma =0=>T = (18.41)

m,+m,

The same result is obtained if the material point of mass m, is isolated, because the
pulley has no mass and thus no moment of inertia.

250



18.6.1. The Resultant vector and the Resultant moment of
d'Alembert fictitious forces

The resultant vector and the resultant moment of d'Alembert fictitious forces can
be written, by marking the fictitious forces and moments, instead of using the bar

(132l

above sign “ “for vectors, it will be used the wavy line sign , as:
y n n n dav. d <& d[__l
R= -ma,)=—) ma,=—) m—=——> my =———
lzl( ] l) IZI 11 IZI 1 dt dt p 1 dl'
Wy = Y7 () =~y Ty, ==Y i (18.42)
i=1 i=1 i=1
5 d L dr; 5 d dK
=D XM+ Y XY, = =) (X ) ==
o dt o dt o dt dt

In the case of a rigid body having a translation motion:

ﬁ:—Wc;
~ (18.43)
M. =-pxMa,

where M is the mass of the body, p and a are the position vector and the
acceleration of the mass center respectively.

In the case of a rigid body having a rotation motion about the Oz axis:

ﬁ’:—Ma_C;
. S L= _ (18.44)
M, =(sz8—]wa )i +(Jyzg+sza) )j —J.ck

If J_=J,_=0,then

M, =-J.ck. (18.45)

It is important to note that in the fictitious equilibrium equation of moments, if the
mechanical moments of inertia have been determined about the Oxyz frame, there
will be not added the moment of the fictious resulting force R = —Ma, . The reason
is that the moments of elementary fictitious forces have already been included
in M o- On the contrary, if M 018 determined using mechanical moments of inertia

about the central frame (with the origin in the mass center), the moment of R must
be included in the equation of moments balance.

In the case of a rigid body with a fixed point O (axesO,,0,,0, are principal axes

of inertia):
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M,=[-Je —(J,-)o,0li +[-J,& —(J,-J)oolj+  (18.46)

H-Je. - (J, - J)o.0, Tk

z

Example 1. Atwood's machine with moment of inertia.
At the ends of a string (inextensible, weightless) passing over a pulley of mass m
and radius r are suspended two material points of masses m, and m,. Determine

the acceleration a of the material point of massm, .

Adding the fictitious forces (F —ma ) and (F,=-m,a) and the fictitious
couple (MO =-J&) to the real forces and moments, the system of three rigid

bodies can be seen as a single rigid body for which equations of (fictitious)
equilibrium can be written. The equation of moment balance with respect to the
center of the pulley is:

(mg—-mayr—(mg+ma)yr—-Je=0. (18.47)

Replacing the mechanical moment of

inertia about the <center of the
2

disc:J, = ™ and the angular

acceleration for a rotating disc of radius r
and linear acceleration a at its boundary,

a :
by & =—, then the acceleration of the two
r

masses results to be:

a= L’"Zm g (18.48)
m, +m, +—
2
E=-ma The acceleration 1is smaller if the

mechanical moment of inertia is taken
into consideration.

Fig. 18.10 Atwood machine. Model with moment of inertia.

Example 2.

A homogeneous bar of length / and mass M, rotates in a vertical plane about a
horizontal axis passing through O, under the action of its own weight. At the initial
moment ¢ = (), the bar is horizontal and at rest. Determine the angular acceleration
¢, the angular velocity @, and the reaction R in O for a given angle 6 (Fig. 18.11).
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Vyo a) b

Fig. 18.11 A bar rotating from initial rest (a). The free body diagram with applied pseudo-forces (b)

Oxyz is a Cartesian frame attached to the bar and Ox coincides with the bar
direction. R and R are the projections of the reaction R in the hinge. There will

be added to the model, the fictitious forces /= F.i + F,j and moment M =—J,&

in the mass center of the bar:

F =-Ma, :széf; F =-Ma, =—Meé]_'
(18.49)
~ P —
M, :—JOE:—M?gk
The equations of (fictitious) equilibrium on the Oxyz frame are :
RX+Mgsin0+Ma)2£:0; R +MgcosH—Mg£=O
2 y
’ (18.50)
—-J & +Mg500s9 =0
e M . I’
Remark: if instead of J,= it had been wused J.=M o and

2

M.=-J.g=-M 11—2(91; , then the last equation form (18.50) would have been:

[l [
-J.e—Me——+ Mg—cosf =0, 18.51
c 27 g2 ( )

which leads to the same result. From the moment balance equations (18.50)(c) or
(18.51), it follows:

r=>2 050, (18.52)
21
Multiplying by @ =0 (& =0) and integrating it can be obtained successively:
N2

06 =20cos0 = L -38gnosc = a)2=3—gsin6’, (18.53)
21 2 21 21

for the given initial condition, or
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a):i‘/37gsin9. (18.54)

Replacing @ and ¢ in the first two equations (18.50), it results:

R, :_5]\2/[g sin &, R :—%cosﬁ; (18.55)

y

the negative values indicating opposite orientations vs. those chosen on Fig. 18.11.

18.7. D’Alembert — Lagrange equation

According to the principle of d’Alembert, the system of lost forces { F, —m.a, } has
no effect on the system of material points, in other words it is in (fictitious)
equilibrium. According to the principle of virtual work, if a system of forces is in
equilibrium the virtual work of this system is equal to zero. Consequently, the
following equations can be written:

S (F - ma,)57 =0. (18.56)

i=1

el

This represents the d’Alembert-Lagrange equation.
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19. LAGRANGE EQUATIONS

19.1. Lagrange equations of the first kind
A holonomic and rheonomic system of material points is considered. Since:

7. =7(q)seees 1) s (19.1)

where ¢;...q; are the Lagrange generalized coordinates, the virtual displacements:

or. or, or, or.
or, = ’§q +.. +—’5q +.. +—’§q oq (19.2)
oq, 1 0q, ‘ oq, ! kZI:aCIk ‘

and d’Alembert — Lagrange’s equation (18.56) become:

3(F-ma Yo7 =3.(F - ma )(z;—'a ] z{’z’@” (F-m )}sqk:o.ag.s)

k=1 ,18qk

=1 &

Since the system of material points is a holonomic one, the virtual displacements
oq, are independent. If 8¢, =0,....0q, =0, 6q, #0, 5¢q,., =0,..,0q, =0, it
follows:

ST (F-ma)=0; k=1..h. (19.4)
i=1 6qk
These equations can be written in the form:
Y T g =0 k=1,..h: (19.5)
i=1 aqk
where
or -
0, = 6—’Fi; k=1..h; (19.6)

are called generalized forces.

The equations (19.5) are known as Lagrange equations of the first kind for
holonomic systems.

If the system of material points is non-holonomic, then og,,...0q, are not

independent. Supposing there are s non-integrable differential relations (s < /):

a,0q, + ........ +a,0q,=0
............................... (19.7)
a,0q, +........ +a,0q,=0
with:
a; = A, (g e q,.t). (19.8)
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Applying Lagrange’s method of multipliers instead of (19.3) it can be obtained the
equation:

h noo — a; s h
Z{Z(F,. —m,-aag}aqk +37, (;a,,kﬁqkj -0, (19.9)

k=1| i=1

where 4,(j=1,.....,s)are unknown multipliers. The multipliers can be determined

by imposing that g, (k=1,.....,h)to be independent. The equation (19.9) can be
written in the form:

n

h — —_ s
;{E(E‘mﬂl)%@l%a/k}é’qk=0- (19.10)

The parameters g, correspond to independent virtual displacements so that (19.10)
is equivalent to / equations:

i(ﬁ—mia_,)g—“+izjaﬂ —0; k=1,..h. (19.11)
i=1 qk Jj=1

The equations (19.11) are known as Lagrange equations of the first kind for
non-holonomic systems.

19.2. Lagrange equations of the second kind

. & —0r .
The expression » m.a,—- can be written in the form:

i=1 &

S mﬁiﬁ: , mﬂ@_r:i vaa_r —Zn:m,.ﬁi 9| (19.12)
=1 aqk i=1 dt 8qk dt| = 8qk i=1 dt\ O f

Differentiating the position vector (19.1) with respect to time will be obtained the
velocity:
or. or. or. or, or,

1

V=—""=q¢g+——q +..+—¢q +.+—q, +

, —L. (19.13)
0q, 0q, oq, oq, ot

Considering \7 a vector function of the Lagrange generalized coordinates ¢, ....,qx
and of the Lagrange generalized velocities ¢,,q,as all these 2/ parameters were
independent, then:
o _on (19.14)
g,  0q;

L . , 7. N
because V. is a linear function of ¢, and 6—’ is the “coefficient” of ¢, .
qx
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Calculating di(a—rj and M one gets:

t\ 0q, oq,
d[ar;j or . 0T . oF . o’r . O
— = q,+ g, +...+ q,+..+ q,+
dt\ 0q, ) 0q.0q, ~ 0q,0q, 04,04, 0q,0q, —  0t0g, (19.15)
o oF ; oF o or . OF d[afij
= g, + g, +...+ g, +..+ q,+
oq, 04,09, 04,09, 04,04, 0q,0q, ~ 0q,0t dt| 0q,
It follows that:
afon_ o (19.16)
dt\ 0q, ) g,
or, . dfor . . o .
Replacing I and & 9 by their expressions (19.14) and (19.16) it is obtained:
oq,  dt\ dq,
o S 2| S 2|4 S 220
dt| = oq, | dt|'= oq, dt og,\ 2
_d| d va _d|or
T dt aqk 2 dt\ 0q,
(19.17)

3

d o |3 d V-V,
s 2 2 ()
dt qu 5 ''oq, = 'og. \ 2

0 (& my oT
- (Z ”j:
g = 2 oq,

where T is the kinetic energy of the system of material points. Replacing these
expressions in (19.12), it can be deduced:

AN T . k=1, h. (19.18)
dt\ o4, ) 0q,

which represent the Lagrange equations of the second kind for holonomic
systems of material points.

In a similar manner it can be deduced:

di\oq, ) oq,

which represent the Lagrange equations of the second kind for non-holonomic
systems of material points, to which must be added the s equations (19.7).

i(aTj or _ +Zﬂ/ak, k=1,..h, (19.19)
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Note : The generalized forces can be calculated using the formula (19.6). Another
method is based on the expression of the virtual work of given forces:

e " — Or )
5W=§1F,- n= ZF[ZG : 5qkj ZI[ZIFI'_J% =;Qk5qk. (19.20)

o1 0q, 0q,
If 6q,=0...,0q,,=0, 06q, #0, 6q,,=0,...,0q, =0, then can be obtained for each
generalized coordinate:

oW =0,6q,, (19.21)

where 6 W 1is the virtual work if the Lagrange generalized coordinate g, has a
virtual variation og,. The generalized force O, is the coefficient of &, in the
expression of o IV .

19.2.1. Case of a conservative system of given forces
If all the given forces F, are conservative, which means that their components X;,
Y; Z; can be obtained are the derivatives of so called force functions:

oU av, . oU

X =—" Y= Z=—"; i=1..,n; (19.22)
ox, Gy Oz,
then
oL = iflé';l = Zn:(Xl.é'xi +YOy, +Z2,6z,) =
i=1 i=1
(19.23)
n n n h
(WU s + Y5y 2 Y. |ossu 63U =0 =3 Y 54,
i=1 axl. 0 ; 6 i=1 i=1 k=1 aqk
Comparing (19.23) to (19.20) it can be obtained:
kaa—U; k=1,....h. (19.24)
aq,
It follows that the Lagrange equations in this case are:
i(a'Tj— or =aU; k=1,.,h. (19.25)
dt\ 9, ) 0q, 0g,

These are the Lagrange equations of the second kind for holonomic systems of
material points if all generalized forces come from force functions. Denoting
by:

L=T+U, (19.26)
the function L is called the Lagrange kinetic potential. Since the kinetic energy T
is a function of ¢,,...,q,,4,,...,q,and U is a function of ¢,,...,q, ¢, it follows that:
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8{4 _ 8.T; oL _ oT +8U (19.27)
oq, 0q, oq, 0q, 0q,

Replacing these expressions in (19.18) another form of the Lagrange’s equations
for holonomic systems is obtained, using the kinetic potential:

AWOLN L . k=1,h (19.28)
dr\ &g, ) oq,

and by replacing the expressions (19.27) in (19.19) another form of the Lagrange’s
equations for non-holonomic systems is obtained, using the kinetic potential

d| OL
Sl = - =0 s k=1,...,h. 19.29
L)L g S0, (199

Example 1. Write the Lagrange equations for the system made of a slider of mass
m,; and a point of mass m;, connected by a rod AB of length / and mass m,. The
constraints are smooth (fig. 19.1).

X(t)
mj X
=
C

mg,l

Yv 0(t)® m;s

Fig. 19.1 A mechanical system with two degrees of freedom. A linear parameter and an angular one.

The system is scleronomous and holonomic. The two generalized coordinates are
S 1
x(t) and O(t). The energy of the slider is 7, = Emlfcz. The mass center C of the rod

has a velocity
Vv, (x+é€cos€j + lé’sm@] (19.30)
and the energy of the rod is

2 2
T, =%m2vé+%Jca)2 =%m (x +lt9xcost9+l4¢92j 1%92
2
:lm2 x2+ZQXCOSH+l—92
2 3
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The material point m; has a velocity
v, = (% +10cosO)7 +10sin 0 (19.32)
and energy
T, :%myj :%m3 (4" + 2165 cos 0 +1°67). (19.33)
The kinetic energy of the whole system is:
E= %(m1 +m, +m,) X" + %(m2 +2m,)10% cos 0 + %(% + m3j126"2 . (19.34)
The force function is in this case:

U=mlg0+ngécos0+m3glcos6’=(%+m3jglcost9. (19.35)

The required terms for the first Lagrange equation are:

G_E:(m +m, +m )x+l(m +2m,)l0cos O

ax 1 2 3 2 2 3
%(g—fj:(ml+mz+m3))’é+%(mz+2m3)l<écosﬁ—6’2$in9) (19.36)
GE o U,
ox Ox

and for the second one:
%:%(mz+2m3)b'cc059+(%+m3j126"
i(a—E.j:l(mz+2m3)l(5c'cosl9—x9sin9)+ Tovm PG (19.37)
dt\o6) 2 3
a—E:—l(mz+2m3)b'csin6’; v __ " v m, |glsin®
06 2 06 2

Replacing all these terms in (19.25), the Lagrange equations are:

(i +m, +mg)5é+;(m2 +2m,)1(fcos0—& sin6) =0
(19.38)

;(m2 +2n43)l(560050—x95m9)+(n;2 +m3jlzé+;(mz +2m3)b'csin0:—(n;2 +m3jglsin@

Example 2. Write the Lagrange equation for the motion of a heavy material point
A of mass m constrained to move on a bar which rotates uniformly about a vertical
axis and study the motion (Fig. 19.2).
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A
A
)L o _
\ mg
y
O >
0=wt

Fig. 19.2 A point sliding freely on a bar rotating uniformly about the Oz axis

This system is a rheonomic system, with the single degree of freedom. It can be
chosen OA=A(t) as Lagrange generalized coordinate. The natural coordinates of A

arc:

X = Asina coswt; y = Asina sinwt ; z= Acosa

(19.39)

The projections of the velocity on the axis of the fixed Cartesian frame Oxyz are:

%= Asina coswt — Awsin asin wt;
y = Asinasin ot + Awsin a cos ot
z=Acosa

The expression of the kinetic energy of the material point A is:

T= %(x2 +30+2)= %(22 + A0’ sin’ a)
The force function U has the expression:

U=-mgz=—mgA cosa

The kinetic potential L has the expression:

L:T+U:%(/i2 + @’ sin’ a) — mgA cosa

It follows that:
a—]fzm/i; i(a—szm, a—Lzmﬂa)z sin’ o —mg cosa
oA dt\ oA oA

The Lagrange equation is:
mA —mA®*sin® a + mgcosa =0.

This differential equation can be written:
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(19.40)

(19.41)

(19.42)

(19.43)

(19.44)

(19.45)



A—Aw’sin’ a =—mgcosa. (19.46)
It is a non-homogeneous linear differential equation. The solution is:

gcosa

2 2

A(t) = C cosh(wtsina) + C,sh(wtsina) + '
@ sin” «

(19.47)

The constants C; and C, can be determined by imposing the initial conditions. If
these conditions are 2 =4, and 4 =0, it follows that:

C = - geosa

1

22 . ¢, =0, (19.48)
O s o

The motion of 4 is defined by the equation:

gcosa

z:(zo—WJch(wsina)H S8 (19.49)
® sin" a ' sin" a
An interesting case corresponds to the initial conditions:
4,=-850% . j-o. (19.50)
o sin” o

gcosa

W’ sin’ o

with respect to the bar.

It follows A(¢)= which indicates that the material point is at relative rest

Example 3. Write the Lagrange equations for a homogeneous disc of mass M and
radius R, moving on an inclined surface (angle a with the horizontal direction).
The contact is with sliding friction of coefficient x4 and rolling friction of
coefficient s. The rolling motion can be accompanied by sliding or it can be a pure
rolling.

Fig. 19.3 A disc moving on an inclined plane
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There are two degrees of freedom in the first case: £ and 6 and the system is
holonomic. The kinetic energy is

1 MR* ,

1.
T=—ME +— o’ 19.51
5 ¢ ) (19.51)
and the successive derivatives of the energy are:
?=M§; %(?}M&'; Z—T=0;
. s d (19.52)
O MG d(TT) MR T
80 2 T at\eg) 2 7 00
o0& dt\ o0& o0& 06 2 dt\ o0 2 06

The work 1s produced by: the weight moving down, the sliding friction force Fy
applied in the contact point which has an instantaneous velocity £ — R and the

rolling friction moment M, which is acting against the instantaneous rotation of
angle 0:

ow =mgsinaé’é—Ff(5§—R59)—Mr50
= (mgsina —F, )5 +(F,R-M, )56

r

(19.53)

from which
Q. =mgsina —F,

(19.54)
0,=F,R-M,

Since sliding is assumed to take place, then F, =uMgcosa and in any case

M, =sMgcosa . The Lagrange equations are:

Mé = Mgsina —F, = Mg(sina — pcos )

- (19.55)
MR O=FR-M =Mg(Ru-s)cosa

For rolling without sliding, the contact point has instantaneous null velocity
f—RQ:O or Ré:f.

For null initial conditions & — RO =0, meaning that the system is in this case non-
holonomic: 6§ — Ro6 =0.

From (19.7) s=1 and a;;=1; a;»=-R. The Lagrange equations are in this case

ME = Mg (sina — ucosa)+ A,

- (19.56)
MR =Mg(Ru—s)cosa — AR
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Eliminating 4; from these equations one gets a single Lagrange equation, since the
system remains with only one degree of freedom:

.2 ) S
=—g|sina ——cosa 19.57
g 3g( 7 j ( )

which corresponds to the equation (15.118) from chapter 15.
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20. HAMILTON CANONICAL EQUATIONS

20.1. Integration of Lagrange equations. Hamilton Function

The Lagrange equations for a holonomic system are:

AfOL)_OL o k=1 (20.1)
dt\ o4, ) oq,
It can be assumed that
oL =0, (20.2)
oq,
for a certain g;. Then
a 8—L =0. (20.3)
dt\ 0q,

Equation (20.2) is a differential equation of the first order. The Lagrange
generalized coordinates ¢, for which the conditions (20.2) is accomplished, are
called cyclic coordinates.

Therefore, if a generalized coordinate g; is cyclic, then its corresponding
equations in Lagrange equation (20.1) can be replaced by a differential equation
(20.3) of the first order. Since L = T + U and if U does not depend on g¢,,...,q, it

follows that:
oL _ar_
o4, 4,
The physical quantity p; is called generalized momentum. It may be a linear
momentum, an angular momentum or a more complicated quantity.

k=1,.,h (20.4)

pk;

Example. Study the plane motion of a material point in polar coordinates r and 0,
expressing the generalized momentums.

Since v, =7 and v, = ré the expression of the kinetic energy is:

B 1 2 1 2 2\ _ 1 L) 2,2
T—Emv —Em(vp+vn)—§m[r +7r6 ] (20.5)
The expression of the generalized momentum p, and py are:
oT ) oT 5 -
=——=mr=my_; =—=mr6@=mrv 20.6
P =5 Y " (20.0)

Obviously, p, is a linear momentum and py is an angular momentum.
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Remark. The relation (20.3) can be regarded as a conservation property of the
generalized momentum. Therefore, if some generalized coordinate g, is cyclic,
then its corresponding generalized momentum py is conservative:

p. =C. (20.7)

The relation (20.7) deduced in Analytic Mechanics corresponds to two
conservation theorems from Newtonian Mechanics: conservation of linear
momentum and conservation of angular momentum.

The conditions for conservation theorem of total energy are now investigated.
Multiplying each equation (20.1) by ¢, and adding afterwards the obtained

equations it can be obtained:

; oL) . oL
29 dz[a j >G,~—=0. (20.8)

k=1 aq k
The terms in the first sum can be developed as:

;de[_J_Z ( 6qk] ;dez(aqkj (209

so that (20.8) can be written:
Ld 4 oL .. oL
—| g 7 =0. 20.10
Z [ a j "Z:: [6(],{ ] Z 8% ( :
The total derivative of the Lagrange kinetic potential L can be written as:

dL & oL L oL .. oL

Gl S D 20.11
PPl DY ral s (20-11)

Using this development, the expression (20.10) implies:

d(. oL dL oL d|«(. eLY] dL oL
Gl g | Ay O Ly 012
;dz[%aqj di o dz{;[q"aqkﬂ i or (82

Replacing (20.4) it follows

d[ oL
L{+—=0. 20.13
dt[Z(pk%) } ot (20.15)
oL
It 5 =0, a first integral is obtained:
h
H =) p.q,—L=const. (20.14)
k=1

The function H thus defined is known as Hamilton’s function.
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It is easy to prove that H=E, with E being the total energy of a mechanical system,

. . o . . L
if the system of material points is scleronomic and holonomic [% = Oj.

Indeed, in this case the kinetic energy T is a quadratic form in variables g,,...,q, ,
which can be written as:

h
T=Xa,q4,. (20.15)

i,k=1

A well-known property of homogeneous functions f(x,,....,x,) of degree n is the
following:

xli+...+xhal:nf(xl,...,xh) (20.16)
ox, ox,
which can be applied to the function 7, for which n = 2. It follows that:
a—j_wa+...+a—.Tq'h=2T. (20.17)
an aqh
Since 8—T = p,, this implies:
k
h
> p.g,=2T. (20.18)
k=1

The Lagrange kinetic potential L=7+U =T -V, where V' is the potential energy,
the expression (20.14) of H becomes:

h
H=Ypq, —L=2T-T+V=T+V =E =const. (20.19)
k=1

which represents the theorem of total energy balance (conservation). Note that H =
T + V = E only for scleronomic holonomic systems.

20.2. Hamilton Canonical Equations

Returning to the relation (20.4):
6.—T=pk; k=1,..,h, (20.20)
9

these expressions can be considered as a linear system of equations in ¢,,...,q,.
Supposing the solution of this system as having the form:

G, =G, (Dyseees D515 q,1); k=1,...,0, (20.21)
and replacing ¢, (k =1,...,/) in (20.14):
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h
H=Y p.q,—L(DPses PG54, -1), (20.22)
k=1

it follows that the expression of H is a function of p,,...p,.q,,....q,,t only:

H(Pyvooor Prsrreees ol - (20.23)

The partial derivatives of H with respect to p, and ¢, , taking into account (20.4),
(20.1) and (20.20), can be obtained as follows:

OH . & 0q, &oLoq, ! 1, <
=4t 2P (2P Zp
8pk g j=1 8pk j=1 8qj 8pk Jj=1 Jj=1
OH & 04, oL & 0Ldg o aq,. d(oL) & &
=P '—Zp, Lo — | — Zp = (20.24)
oq, = '0q, 0Oq, =0q,0q, = '0q, dit\dq, ) = 0q,
d| OL dp,
= —_— —Q | = _ pk
dt\ 0q, dt
Consequently:
OH . OH :
=4q,; —=-p,. (20.25)
ap, 0q,

These equations are called the Hamilton canonical equations.

An interesting remark can be made concerning the derivative of H with respect to
the time:

dH oM G OH O §

dt Jj=1 6pk Jj=1 aqk at Jj=1 apk

8H{ aH]+ L OH OH  OH _ 8H(2026)

oq, ) = 0q, Op, Ot
indicating that the derivative of the Hamilton function with respect to time is equal

to its partial derivative with respect to time.
An immediate consequence is that in scleronomic — holonomic and autonomous

.. OH : . . .
systems for which 8—=0, the Hamilton function is a constant. Since in such
4

systems: H =T + V = E, it is again found the principle of the total energy E
balance (conservation) in scleronomic — holonomic systems.

Example.
Write the canonical equations of Hamilton for the motion of a material of mass m
point acted by a Newtonian force of universal attraction from a material point of
mass M situated at distance r.

The kinetic energy is:

Tzémvz:%m(v;+vj):%m[f2+r292] (20.27)
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The potential energy is:

y—_rm (20.28)

r

in which f=6.67428e-11 m’kg's? is the universal attraction constant. The
Hamilton function is:

H:T+V=lm[;%2+r26"2]—fM (20.29)
2 r
The expressions of the generalized momentums are:
oT : oT 2/
=—=mr, =—.=mr9 2030
Solving this system of equations, it follows that:
p=Le, g=Lo (20.31)

Substituting these expressions in H, it can be obtained:

2 2
H:&+A2_fm—M (20.32)
2m  2mr r
The Hamilton canonical equations, in general form:
pr:a_H; pgz_a_H; ,;:a_H; 9:_5_H (20.33)
or 00 op, P,
become 1n this case:
2
b= Lo U o e g P (2034)
mr r m mr

20.3. Integration of Hamilton canonical equations. Poisson brackets

In order to integrate Hamilton canonical equations, it can be sought as first (prime)
integrals which are constant expressions of the form:

dF
F(psesD,»q,5--9,,t) =C or ZZO' (20.35)
It is necessary to calculate the derivative with respect to time ¢ of such a function

F(pseesD,»q,5--9,,1). It follows that:

dF 3 0OF . &OF | 8F_”(8F6H_8F8Hj OF

a _y ot s oot o + (2036
dt ;Z-;apk P jz—llaqk % ot /Z; aqk apk apk aqk ot ( )
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The following notation is introduced:

d (acp oOF 00 0¥
oq, 9p, p, 9q,

where ® and ¥ are functions of p,,....,p,.q,,....q,,t. The expression (®,¥) is

called the Poisson bracket of functions ® and ¥. Using this notation, (20.36)
becomes:

j =(D,¥), (20.37)

=

dF oF
L (FH)+ 20.38
v (F.H) Py (20.38)

The Poisson bracket has some remarkable properties. It is easy to verify that
(0,0)=0; (@,9)=-(¥,0); (CO,¥)=C(0,%);

A2 (D)o ) (o)==t (=S )

ot o ot g T

Using Poisson bracket, Hamilton canonical equations, can be expressed as:

po=(p.H) ¢,=(q.H). (20.40)
Another property of the Poisson brackets is the Poisson-Jacobi identity:
(P, Q). R) + ((0. R), P) + ((R, P), Q) =0. (20.41)
20.3.1. The Poisson theorem

If ®=C,and ¥ = C,; are two first integrals of Hamilton canonical equations, then
(@, ¥)is also a first integral.
Indeed, if ® = C, and ¥ = C; are first integrals, then:

oD v
®, H)+ =0, (¥, H)+2-=0 20.42
(@, H)+=-=0; (¥, H)+— (20.42)

By using the Poisson-Jacobi identity (20.41), it follows:
(@, %), H) +((¥.H),®)+ (H®),¥) =0 (20.43)
The expressions (20.42) can be written:

oD oY
(D, H)——E, (¥, H)= p (20.44)

and (20.43) can be expressed successively:

((®, ¥), H) +(—%—\P,®j+ (%‘D,‘Pj =0
oo ‘;) t (20.45)
o=
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Therefore(®,¥)is an integral of the Hamilton canonical equations.

20.4. Variational Principles. Hamilton Principle

While the theory of ordinary functions maxima and minima is concerned with
unknown values of independent variables x or x; corresponding to maxima and
minima of given functions, it is the objective of the calculus of variations to find
unknown functions y(x) or yi(x); i=1I,...h, which will maximize or minimize
definite integrals like:

1= TF[y(x),y'(x),x]dx , (20.46)

Rl

or

1 ZTF (210,00, 2, (30, ${ ()00, ¥ ()3 ]l (20.47)

R

A necessary condition for the existence of either a maximum or a minimum of the
definite integral (20.46) is that the function F verifies the differential equation

dfoF) _oF _ 0, (20.48)
dx\ oy’ ) Oy
and for the integral (20.47), the equivalent conditions are:
i(ij_&izo; k=1,..,h (20.49)
dx\ oy, )] Oy,

These differential equations are called the Euler differential equations.
Comparing the Euler differential equations (20.49)with the Lagrange equations:

a a—L —8—L=O; k=1,.,h (20.50)
dt aqk aqk

it follows that the Lagrange equations can be considered as Euler differential
equations for the integral of the Lagrange kinetic potential :

I =[L(Gyseens,syrenes ot ) dlt (20.51)

The quantity / is a product of energy by time and is called mechanical action or
simply action.

From the above statements it follows that the action represents a maximum or
minimum or in general a stationary value, which can be expresses as:

SI=0 or 5( | Ldtjzo. (20.52)
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The operator ¢ corresponds to variations in the sense of virtual displacements and
velocities in the Lagrange kinetic potential, evaluated from the initial state S; at
time ¢, and the final state S; at time #,. This formula can be expressed as:

“From all the possible motions of a mechanical system acted by non-dissipative
forces (but the force function can depend on time), it will take place that particular
motion which minimizes the mechanical action.”

This statement is known as the principle of the minimum action or Hamilton
principle.

Example.

Deduce that it is possible to deduce the Hamilton canonical equations from the
Hamilton principle.

h
Indeed, from the expression of H =) p,g, — L it follows that:
k=1

h
L=pa —H. (20.53)
k=1

The integral (20.51) can be written:

L7 &
I :J‘[kzpqu _H(pp*":phaqp"'aqhat):ldt- (2054)
f =1

h
Considering as functions py,...,ps and g, ...,q; and denoting by F =) p,q4, —H,
k=1

then Euler equations are:

i a—F —a—F=0; i 8_F —a—F=O; k=1...h (20.55)
dt\ 0q, ) 0q, dt\ op, ) op,
or
d OH d ) OoH
dt oq, dt op,
from which if follows:
) OoH . OH
D=7, q, =—. (20.57)
aq, p,

and these are the Hamilton canonical equations.

20.5. Canonical Transformations

There is no unique system of generalized coordinates for a given system of
material points. Practically the problem is to choose such a system of generalized
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coordinates, that the Hamilton canonical equations will be as simple as possible. In
order to solve this problem it is necessary to study the general problem of the
generalized coordinates and generalized momentums:

qk: qk(Qp"'Q;,: R,,B,,t), kzl,...,h
pk: pk(Q]:"'Qha P],,Ph,t), kzl,,h
Replacing these expressions of gx and px in H (py,....pnq1, -..,qnt) @ NEW expression

K(P;,...,Py, QOy,...Ont) of the Hamilton function can be obtained. It is important
that the Hamilton canonical equations maintain the same form:

L S (20.59)
00,

oP,
Not all transformations (20.58) maintain the form (20.59) for the Hamilton
canonical equations. The transformations which maintain this form are called
canonical transformations.
It is possible to prove that a transformation (20.58) is canonical if and only if:

h h
> BdQ, =Y pdq, +d¥, (20.60)
k=1 k=1

where Y is a function of Py, ...,P;, Oy, ...Oh.
Indeed, Hamilton canonical equations can be deduced from the Hamilton principle:

(20.58)

B

t, h
S = 5]{2;% —H[pl,...,ph,q,...,qh,tl]}dt. (20.61)
y L k=1

If pr and gy are replaced by their expressions (20.58), and if the condition (20.60) is
accomplished, then the integral / becomes:

2] h . d
I[;kak —K(R,...,ﬂ,Ql,...,Qh,t)+7"’;}7, (20.62)

but

[dy =y, v, = const., (20.63)

so that the minimum of the integral in (20.62) takes place simultaneously with the
minimum of the integral:

LI h .
1= j[ZPka - K(Pl,...,P,I,QI ,...,Qh,t)}dt . (20.64)
5 L=t
The corresponding Euler differential equations are:
P G 0, _OK v, (20.65)
20, oP,

which are representing the Hamilton canonical equations.
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Example.
Prove that the following transformation is canonical:

P=\C+2p-cosq; Q=+C+2p-sing, (20.66)

in which C is a constant.
It has to be proven that PdQ — pdg =d¥ , which means the left side of the

equality is an exact differential:

dp :
PdO — pdg =~NC+2P -cosQ | ———=sing ++/C+2pcosgdg |— pd
Q- pdq Q{m q++ p qq} pdq

(20.67)
=singcosqdp +|(C+2p)cos’ g — p |dg = %d[psian + C(q + squﬂ
It follows that
1 : sin2q
Y =—| psin2g+C| g+ , (20.68)
2 2
and therefore the transformation is canonical.
20.5.1. Lagrange Brackets
The condition (20.60) for a canonical transformation is:
h h
> PdQ =Y pdq +d¥, (20.69)
k=1 =1 )

in which the new variables P;, Oy will be expressed as functions of the old
variables py, gk . Thus

do, = Zggkdp +Z Skdq k=1,..h
' o (20.70)

dy = za'/’dp W,
Jj=1 p ]18

Substituting these expressions of dQx and d¥ in (20.69), it follows:

a0 =3 R 550 ap, + 3520 | =3t + 3,2 3,5 g, 07
k=1 P Jj=1 Jj=1

J

and grouping adequately the terms, it follows:

Z(Z kaQ"—a—W p, - i(pﬁa—‘/’—ﬁp agkjdqfo. (20.72)

j=1\ k=1 ap apA Jj=1 ;

J

Since dp; and dg; are independent, the relation (20.72) is equivalent to the
following / systems of equations:
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h
> P 0, —a—w; j=1..h

(20.73)

XP %0, —a—v/:p.' j=L..,h

The function ¥ can be eliminated from the relations (20.73). There are several
possibilities.

a) From the first set of equations, it will be written the equation for j=i
(i €[l,...,n]) and then derivate with respect to p. From the same set it will be
written the equation for j=/ with / €[l,...,n] and derivate this relation with respect
to p:. Subtracting the obtained equations, one gets:

h 2 h 2
> %GQ"+Pk o0, - %aQ"+Pk o0, =0, (20.74)
w1\ Op, Op, op,Op, ) =\ Op, Op, Op.op,

or after cancelling identical terms:
| OP, O OP, 00,
[Pzapi]:Z{a_ka—Qk——g}=0- (20.75)
=i dp, Ip, Op, Op,

b) From the second set of equations (20.73), written for j=i , then computing
its derivative with respect to ¢g; and repeating the procedure for j=/ and computing
the derivative with respect to g;. Subtracting the equations thus obtained, one gets:

h 2 h 2
D @aQqu o0, -y @aQqu 0 1o, (20.76)
=i\ 0q, 0q,  0q0q,) =\ 0q, 09, "~ q,0q,

or after cancelling identical terms:
h
[ql,qi]:z{ﬂ%_@@}:o, (20.77)

c) From the first set of equations (20.73), written for j=i is computed its
derivative with respect to ¢; and from the second set of equations written for j=/ is
computed the derivative with respect to p;. Subtracting the equations thus obtained,
it can be obtained:

zh: oF, 90, +P 70, —i OF, 90, +P 90, =0, (20.78)
\op, oq, ‘opoq,) F\og dp,  ‘ogop)
or after cancelling identical terms:
[p.q,] =f[%%—%%}d (20.79)
v 5\ op, 0q,  0q, op, !

in which 6, is the Kronecker symbol (6, =0 if [#iand J, =1 if i =/).
These expressions (20.75), (20.77) and (20.79) are called Lagrange brackets.
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Example. Prove that the following transformation is canonical:

P=\/C+2p-cosq; QO=.C+2p-sing, (20.80)

in which C is a constant.

In this case there is an unique Lagrange bracket [¢,p] which must be equal to 1. It
follows that:

0QoP 0Q oP 1 . 1 .
———-———=,/C+2pcosq cosq —+/C +2psing———=(-singq)
oq dp Op Oq JC+2p JC+2p (20.81)

=cos’g+sin’g=1

20.6. Phase Space

The generalized coordinates ¢, ...,q» and the generalized momentums p;, ...,p, can
be considered as the coordinates of a point in a space with 24 dimensions. This
space was introduced by Gibbs. It is called phase space. The motion of a system of
material points can be represented by a path in the phase space. A point in the
phase space does not represent the position of the material point system only, but
also the generalized momentums of the system. Therefore a point in the phase
space represents the state of the system of material points.

Example. Determine the locus in the phase space for the motion of a material
point of mass m acted by an elastic force proportional with the position by an

elastic constant k.

The kinetic and potential energy are respectively:

Tzlmv2 =lm5c2; Vzlkx2 (20.82)
2 2 2
The Hamilton function is:
H:T+V:lm)'c2+lkx2 (20.83)
2 2
The generalized momentum is:
P =8—T=mx. (20.84)
ox
By denoting x =g, the Hamilton function can be written:
2
p 1,
H="—+—kq". 20.85
S Tk (20.85)

Since the system is autonomous, H = C with C a constant which can be obtained
from the initial conditions. Thus (20.85) can be cast into the following form:
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2 2 2

L W RN S (20.86)
2m 2 ( 2cj ( 2mc)
k

The path in the phase plane is an “ellipse”. The position “semi-axis” is ,[% and

the momentum semi-axis is+/2mC . It is obvious the semi-axis have different
dimensions, but the locus or the “path” in this phase space gives a rapid overall
impression about the motion taking place. An ellipse is a perpetual path which is
typical for non-dissipative systems. A path converging towards a point represents a
dissipating system and so on.

A

N2mC
2C
O r P

»

Fig. 20.1 The path in the phase plane for a material point acted by an elastic force

20.6.1. Liouville Theorem

Supposing that a system of material points is characterized by the generalized
coordinates g and generalized momentums p; at a time t, that becomes Qy and Py
at a time #+dt it can be written:

0, =q, +q,dt =g, +2—Hdt; k=L..h
;;[ (20.87)
Pk=pk+pkdt:pk_a_dz; k=1,..,h

k

It can be proven that (20.87) defines a canonical transformation, such that:

h . h
2RO, -2 pg =d¥. (20.88)

Indeed, using (20.60), these transformations can be written as:
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Z[PQk P, = ZK —a—qkdrj{qk

+i o dt |- p.q
at\ op, P4,

n [ h
:Z d aH dt — aﬂdt Z aH a_H 'k_q'kaﬂ dt
= P op, 8qk =\ " op. | ap, oq,
_~ d 0H i — z aH s
k=l_dt épk = ka 8q
" OH " oH oH oOH oH Lo OH
T, Rebi ~d( 30 2y
k=1 apk k=1 a%c apk apk a%c k=1 apk
in which
L OH
v=2p -

k

(20.89)

(20.90)

It follows that the motion of a system of material points can be represented in the
phase space as a series of infinitesimal canonical transformations.
Consider a domain (D) in the phase space and all the paths that begin in points of
this domain at time ¢. Let be (D’) be the domain occupied by the same points at
time ¢ + d¢. It must be proven that the volume of D is equal to the volume of D":

[..]dp,..dp,dq,..dq,=|..[ dP..dPdQ,..dO,

dP,...dP,dQ,...dQ, =|J|dp,..dp,dq,..dq,

Indeed

in which
A A S T
@1 @)h @1 aqh @1
® waw @ @,

e @ Tal| e
0 0w w a,
@1 @/)h @1 aqh @1
0w o a,
P, Pd, o ag,| | P,

—1+Z{ap" aqk}HO(dt )
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By By
P, g,

1+%dt @dt
%dt 1+%dt
Gy iy
P, g,

o,

&y,
ag,
i,

aq,

1+%dt

h

(20.91)

(20.92)

(20.93)




Considering the fact that

AV
ZF&+@ﬂm:z(a(ﬁH}-afWIy=m (20.94)
i\ Op, 0q, =\ op, | Oq, g, \ Op,

it follows that |J| =1+ O(df*) and therefore
dP..dPdQ,..dQ, = dp,..dp,dq,..dq,, (20.95)

proving thus the equality (20.91).

The volume of a domain D of the phase space is an integral invariant to the
Hamilton canonical equations. This statement is known as the theorem of
Liouville.

20.7. The Hamilton-Jacobi partial differential equation

The following partial differential equation of the first order is considered:

a—S+H ql,...,qh,a—S,...,a—S,t =0, (20.96)
ot oq oq

1 h

obtained by replacing in the Hamilton function H(q,,...,qs ,p1 ,-..,p») the generalized

momentums p; by the partial derivatives S—S of a function S= S(q; ,...,qn ).
qk
This equation is called the Hamilton - Jacobi partial differential equation.

20.7.1. Jacobi theorem

It S= S(q; ,....qn, ai ,...,ant)+ ap+; 1s the complete integral of (20.96), where a;
..... ay, are essential constants and ay-; 1s an additive constant such that:

det{ s } #0, (20.97)
0q,0a,

then the expressions of g = qi(t), pr = pi(t), k = 1,...,h can be obtained from the
following relations:

B, By,
oa, oa,
(20.98)
as_ s
aql p]""’ 8qh ph

This statement represents the Jacobi theorem.
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In order to prove this theorem, the derivative with respect to time of a relation from

(20.98) e.g. S—S =b,, will be determined:
a.
2

’S 3 . .
+> i=1,..,h. (20.99)
otba, = ﬁq,ﬁa

Since S= S(q; ,..., qn aj ,..., ant)t an+; 1s a complete integral of (20.96)it follows
that (20.96) is identically satisfied by this solution. Once this replacement is made,
the derivative with respect to the constant a; will provide:

0’S N " oH 0’S
Oa 0t = Op, 0q,0a,
Subtracting the relations (20.99) and (20.100) it results:

A 2
I (e LR T R’ (20.101)
1 0q,0a, op,

=0; i=1..,h (20.100)

These equations can be seen as a homogeneous algebraic system with # unknowns

(q'k —Z—HJ Since the determinant of this system is not zero (see (20.97)), it

k

follows that (qk - gﬂj 0; k=1,....,h which corresponds to:

Py
4 =——> i=L..,h, (20.102)

the first group of Hamilton’s canonical equations.
Taking now the derivative with respect to time of the second group of equalities

from (20.98), e.g. S—S = p, it follows:

2

82
otoq,

2

h
P i=L..,h (20.103)
k=1 8 q

Replacing the solution S= S(q; ,...,qn, ai ,...,ant)+ aps; in (20.96) and taking the
derivative with respect to g; it follows that:

o’S N Zh: OH 0°S 8H
0q,0t = Op, 0q,0q, 861[

Subtracting the relations (20.103) and (20.104) it follows:
' 9’S (. OH)\ OH
Z (Qk j A
510q,0q. op, )] 0q.

Using (20.102) to cancel the sum, it follows :
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=0; i=1,..h (20.104)

:pl; i:]‘""5h (20.105)



a—H:—pi; i=1,...h (20.106)
oq,
which represents the second group of canonical equations. The Jacobi theorem is
thus proved.

Example.

Write the Hamilton - Jacobi partial differential equation for a plane motion of a
material point of mass m acted by another point of mass M by a Newtonian force
of universal attraction of constant f/ and deduce the expressions of generalized
coordinates and generalized momentums.

It has been deduced (20.32) the Hamilton function in this case:

2 2
H:&+A2_fm—M (20.107)
2m  2mr r
The Hamilton - Jacobi partial differential equation is
2 2
a—S+LKa—SJ +i2(a_sj }—me =0 (20.108)
ot 2m|\or r -\ o6 r
In order to find a complete integral, it will be tested a solution of the form
S=R(r)+0(0)+T(). (20.109)
Substituting this solution in (20.108), it follows:
T'+L(R')2 — (@) —fﬂz 0 (20.110)
2m 2mr r
Denoting by 7'= a; and Q' = a», the last equation becomes:
P> (R =2 fm*Mr +2mar’ = —a’ (20.111)
or
! 1 2 2 2
R'==\J2fm*Mr —2ma,r* —a (20.112)
r
The complete integral will be
S=at+a,0+| 1\/2 fi®Mr —2mar’ — aldr (20.113)
e
The Hamilton - Jacobi partial differential equations are:
oS oS oS oS
—=b, —=b; —=p, —= 20.114
da, " Ba, T o 7 Ga P (20.114)
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From these, it can be deduced:

= d;
t+'[\/2fm2Mr 2mar’ —a. g

f —a
b, =0+ 2 dr;
’ ;[ r\/2fm2Mr —2mar’ —a;

p = %\/2fm2Mr —2mayr’ —a;;

Py =a,.
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ANNEX. ELEMENTS OF THE THEORY OF LINE SETS

Definition of a line by homogeneous coordinates (Pliiker coordinates)

The unit vector u of a line (A) is considered with the origin in a point of
coordinates (x,y,z). The projections of # on the axis of a Cartesian coordinates

system are:

a=cosa; [=ycosy—zcosf
b=cosf}; m=zcosa—xcosy (1)
c=cosy, n=xcosf—ycosa

for which the following relation is verified:

al +bm+cn=0. (2)

If instead of a, b, ¢, [, m, n are considered the scalars:

Aa,Ab,Ac, Al,Am,An, 3)
with A an arbitrary parameter, these scalars are characterizing an arbitrary vector
placed on (A). The six scalars (3) represent the homogeneous coordinates (Pliiker
coordinates). In the following 4 =/ will be considered, so that the coordinates are

those from (1).

Sets of lines

For a set of N lines in space the homogeneous coordinates can be written in the

matrix:

Cl2 a N i

b, b,

C, Cy (4)
1, I,

m, m,

n, n,

The following cases can be deduced from the rank r of the matrix:

a) r=6 = the lines are arbitrary in space.

b) r=5 = the lines are forming a linear complex. For N=5 this means there is a
linear combination between the homogeneous coordinates a;, b;, c;, [, m;, n,

i=1,..., N such that:

La, + Mb, + Nc, + Al. + Bm. +Cn. =0. (5)
In general, a linear complex is formed by the set of lines about which the resultant
moment of a set of sliding vectors is zero. Particular cases are the set of lines
crossing a given line or the set of lines parallels with a given plane.
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c)r=4 = the lines are forming a linear congruence. For N > 4 this means that
there are two linear combinations (5) between the homogeneous coordinates a;, b,
ci, [, my m;, i=1,..., N. In general the lines of a linear congruence are the common
lines of two linear complexes. A particular case is if lines are crossing two given
lines.

d) r = 3 = the lines are forming a series of lines. For N > 3 this means that
there are three linear combinations (5) between the homogeneous coordinates a;, b,
ci, 1, my, n;, i =1,..., N. In general, the lines of a series of lines are the common
lines of three linear complexes. Particular cases are the lines intersecting in point in
space or the lines parallel with a given line.

e) r =2 = the lines are forming a planar set. For N > 2 this means that there are
four linear combinations (5) between the homogeneous coordinates a;, b;, ¢;, [, m;
n;, i = 1,..., N. Examples are the parallel lines in a plane or the concurrent lines in a
plane.

f) r =1 = the lines are superposed. For N > 1 this means that there are five
linear combinations (5) between the homogeneous coordinates a;, b;, ¢;, [, m;, n,
i=1,.,N.

The moment of a vector about an axis in homogeneous coordinates
Let be an axis (A) of unit vector # and a vector J . Denoting by
(A) (a, b, ¢, I, m, n) the homogeneous coordinates of the unit vector
u and by (4, B, C, L, M, N) the homogeneous coordinates of the
vector V' (Fig. A 1), the moment of /' with respect to (A) can be
deduced:
M, =(?Q,V,ﬁ)z(@—@,f,ﬁ)=(@,7,ﬁ)+(— P,V,ﬁ) )
(00.7.)+ (0P.i.7) (00 )+ 7-(0Pxa)
The projections of @ and OPx# are a, b, ¢ and respectively /,
m, n and those of 7 and OQ x ¥ are 4, B, C, and respectively L,
M, N . It can be deduced for M,:

M,=La+Mb+ Nc+ Al + Bm+Chn. (7)
Remark. Expression (7) can be used in computing the resultant moment of a
system of sliding vectors.

Indeed, denoting by 4, B, C the projections of the resultant vector R and by L, M,
N, the projections of the resultant moment vector M, one gets:

M,=M,+POxR. (8)

+ P xﬁ)-ﬁ:]\zo-ﬁ+(P_0xR)-L7 9
PO)=M -L7+E'(O_P><L7)=La+Mb+NC+AZ+Bm+Cn. )
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